These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17986919)

  • 1. Calibration of the RT3 accelerometer for ambulation and nonambulation in children.
    Chu EY; McManus AM; Yu CC
    Med Sci Sports Exerc; 2007 Nov; 39(11):2085-91. PubMed ID: 17986919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of the RT3 accelerometer for various patterns of physical activity in children and adolescents.
    Vanhelst J; Béghin L; Rasoamanana P; Theunynck D; Meskini T; Iliescu C; Duhamel A; Turck D; Gottrand F
    J Sports Sci; 2010 Feb; 28(4):381-7. PubMed ID: 20175015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation and calibration of an accelerometer in preschool children.
    Pate RR; Almeida MJ; McIver KL; Pfeiffer KA; Dowda M
    Obesity (Silver Spring); 2006 Nov; 14(11):2000-6. PubMed ID: 17135617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation and calibration of physical activity monitors in children.
    Puyau MR; Adolph AL; Vohra FA; Butte NF
    Obes Res; 2002 Mar; 10(3):150-7. PubMed ID: 11886937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decision boundaries and receiver operating characteristic curves: new methods for determining accelerometer cutpoints.
    Jago R; Zakeri I; Baranowski T; Watson K
    J Sports Sci; 2007 Jun; 25(8):937-44. PubMed ID: 17474047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ability of RT3 accelerometer cut points to detect physical activity intensity in ambulatory children with cerebral palsy.
    Ryan J; Walsh M; Gormley J
    Adapt Phys Activ Q; 2014 Oct; 31(4):310-24. PubMed ID: 25211479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actigraph accelerometer interinstrument reliability during free-living in adults.
    McClain JJ; Sisson SB; Tudor-Locke C
    Med Sci Sports Exerc; 2007 Sep; 39(9):1509-14. PubMed ID: 17805082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration and Cross-Validation of the ActiGraph wGT3X+ Accelerometer for the Estimation of Physical Activity Intensity in Children with Intellectual Disabilities.
    McGarty AM; Penpraze V; Melville CA
    PLoS One; 2016; 11(10):e0164928. PubMed ID: 27760219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration and comparison of accelerometer cut points in preschool children.
    van Cauwenberghe E; Labarque V; Trost SG; de Bourdeaudhuij I; Cardon G
    Int J Pediatr Obes; 2011 Jun; 6(2-2):e582-9. PubMed ID: 21121867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents.
    Romanzini M; Petroski EL; Ohara D; Dourado AC; Reichert FF
    Eur J Sport Sci; 2014; 14(1):91-9. PubMed ID: 24533499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of accelerometer output for ambulatory adults with multiple sclerosis.
    Motl RW; Snook EM; Agiovlasitis S; Suh Y
    Arch Phys Med Rehabil; 2009 Oct; 90(10):1778-84. PubMed ID: 19801071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can accelerometry be used to discriminate levels of activity?
    Hendrick P; Bell ML; Bagge PJ; Milosavljevic S
    Ergonomics; 2009 Aug; 52(8):1019-25. PubMed ID: 19629816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actigraph accelerometer-defined boundaries for sedentary behaviour and physical activity intensities in 7 year old children.
    Pulsford RM; Cortina-Borja M; Rich C; Kinnafick FE; Dezateux C; Griffiths LJ
    PLoS One; 2011; 6(8):e21822. PubMed ID: 21853021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wrist-based cut-points for moderate- and vigorous-intensity physical activity for the Actical accelerometer in adults.
    Diaz KM; Krupka DJ; Chang MJ; Kronish IM; Moise N; Goldsmith J; Schwartz JE
    J Sports Sci; 2018 Jan; 36(2):206-212. PubMed ID: 28282744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the RT3 triaxial accelerometer for the assessment of physical activity.
    Rowlands AV; Thomas PW; Eston RG; Topping R
    Med Sci Sports Exerc; 2004 Mar; 36(3):518-24. PubMed ID: 15076796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of intensity-based cut-points for the RT3 accelerometer in youth.
    Joschtel BJ; Trost SG
    J Sci Med Sport; 2014 Sep; 17(5):501-5. PubMed ID: 24262335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new 2-regression model for the Actical accelerometer.
    Crouter SE; Bassett DR
    Br J Sports Med; 2008 Mar; 42(3):217-24. PubMed ID: 17761786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and validity of the international physical activity questionnaire in the Nord-Trøndelag health study (HUNT) population of men.
    Kurtze N; Rangul V; Hustvedt BE
    BMC Med Res Methodol; 2008 Oct; 8():63. PubMed ID: 18844976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadence (steps/min) and intensity during ambulation in 6-20 year olds: the CADENCE-kids study.
    Tudor-Locke C; Schuna JM; Han H; Aguiar EJ; Larrivee S; Hsia DS; Ducharme SW; Barreira TV; Johnson WD
    Int J Behav Nutr Phys Act; 2018 Feb; 15(1):20. PubMed ID: 29482554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.