These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 17986929)

  • 1. In vivo use of a nanoknife for axon microsurgery.
    Chang WC; Hawkes EA; Kliot M; Sretavan DW
    Neurosurgery; 2007 Oct; 61(4):683-91; discussion 691-2. PubMed ID: 17986929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtechnology in medicine: the emergence of surgical microdevices.
    Chang WC; Sretavan DW
    Clin Neurosurg; 2007; 54():137-47. PubMed ID: 18504911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscale surgery on single axons.
    Sretavan DW; Chang W; Hawkes E; Keller C; Kliot M
    Neurosurgery; 2005 Oct; 57(4):635-46; discussion 635-46. PubMed ID: 16239875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characterization of nanoknife with buffering beam for in situ single-cell cutting.
    Shen Y; Nakajima M; Yang Z; Kojima S; Homma M; Fukuda T
    Nanotechnology; 2011 Jul; 22(30):305701. PubMed ID: 21697582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic neuronal properties control selective targeting of regenerating motoneurons.
    Franz CK; Rutishauser U; Rafuse VF
    Brain; 2008 Jun; 131(Pt 6):1492-505. PubMed ID: 18334536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Microelectromechanical Systems (MEMS) forceps for intraocular surgery.
    Bhisitkul RB; Keller CG
    Br J Ophthalmol; 2005 Dec; 89(12):1586-8. PubMed ID: 16299136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical feasibility test on a minimally invasive laser therapy system in microsurgery of nerves.
    Mack KF; Leinung M; Stieve M; Lenarz T; Schwab B
    Minim Invasive Ther Allied Technol; 2008; 17(5):292-9. PubMed ID: 18855207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute energy restriction triggers Wallerian degeneration in mouse.
    Alvarez S; Moldovan M; Krarup C
    Exp Neurol; 2008 Jul; 212(1):166-78. PubMed ID: 18486130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of high-frequency electromagnetics in brain tumour surgery.
    Gharabaghi A; Safavi-Abbasi S; Krischek B; Feigl GC; Lüdemann W; Mirzayan MJ; Samii M; Tatagiba M; Heckl S
    Eur J Surg Oncol; 2008 Jun; 34(6):716-9. PubMed ID: 17959333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve.
    Tannemaat MR; Eggers R; Hendriks WT; de Ruiter GC; van Heerikhuize JJ; Pool CW; Malessy MJ; Boer GJ; Verhaagen J
    Eur J Neurosci; 2008 Oct; 28(8):1467-79. PubMed ID: 18973572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor axon excitability during Wallerian degeneration.
    Moldovan M; Alvarez S; Krarup C
    Brain; 2009 Feb; 132(Pt 2):511-23. PubMed ID: 19074190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different factors promote axonal regeneration of adult rat retinal ganglion cells after lens injury and intravitreal peripheral nerve grafting.
    Lorber B; Berry M; Logan A
    J Neurosci Res; 2008 Mar; 86(4):894-903. PubMed ID: 18074384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical communication between regenerating motor axons and Schwann cells in the growth pathway.
    Vrbova G; Mehra N; Shanmuganathan H; Tyreman N; Schachner M; Gordon T
    Eur J Neurosci; 2009 Aug; 30(3):366-75. PubMed ID: 19656172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From microsurgery to nanosurgery: how viral vectors may help repair the peripheral nerve.
    Tannemaat MR; Boer GJ; Eggers R; Malessy MJ; Verhaagen J
    Prog Brain Res; 2009; 175():173-86. PubMed ID: 19660656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing.
    Tamada A; Kumada T; Zhu Y; Matsumoto T; Hatanaka Y; Muguruma K; Chen Z; Tanabe Y; Torigoe M; Yamauchi K; Oyama H; Nishida K; Murakami F
    Neural Dev; 2008 Nov; 3():29. PubMed ID: 18986510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of EphB2 and ephrin-B2 at the optic nerve head of DBA/2J glaucomatous mice coincides with axon loss.
    Du J; Tran T; Fu C; Sretavan DW
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5567-81. PubMed ID: 18055806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early behavioral and histological outcomes following a novel traumatic partial nerve lesion.
    Hulata D; Hughes WF; Shott S; Kroin JS; Gonzalez MH; Kerns JM
    J Neurosci Methods; 2008 Jul; 172(2):236-44. PubMed ID: 18562013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration.
    Tos P; Ronchi G; Nicolino S; Audisio C; Raimondo S; Fornaro M; Battiston B; Graziani A; Perroteau I; Geuna S
    J Neurosci Methods; 2008 Mar; 169(1):119-27. PubMed ID: 18201767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice.
    Mehanna A; Mishra B; Kurschat N; Schulze C; Bian S; Loers G; Irintchev A; Schachner M
    Brain; 2009 Jun; 132(Pt 6):1449-62. PubMed ID: 19454531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model.
    Apel PJ; Garrett JP; Sierpinski P; Ma J; Atala A; Smith TL; Koman LA; Van Dyke ME
    J Hand Surg Am; 2008 Nov; 33(9):1541-7. PubMed ID: 18984336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.