These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Identification of residues critical for catalysis in a class C beta-lactamase by combinatorial scanning mutagenesis. Goldberg SD; Iannuccilli W; Nguyen T; Ju J; Cornish VW Protein Sci; 2003 Aug; 12(8):1633-45. PubMed ID: 12876313 [TBL] [Abstract][Full Text] [Related]
23. Role of Asp104 in the SHV beta-lactamase. Bethel CR; Hujer AM; Hujer KM; Thomson JM; Ruszczycky MW; Anderson VE; Pusztai-Carey M; Taracila M; Helfand MS; Bonomo RA Antimicrob Agents Chemother; 2006 Dec; 50(12):4124-31. PubMed ID: 16982784 [TBL] [Abstract][Full Text] [Related]
24. Altered β-Lactamase Selection Approach for Site-Directed Mutagenesis. Forloni M; Liu AY; Wajapeyee N Cold Spring Harb Protoc; 2018 Aug; 2018(8):. PubMed ID: 30068589 [TBL] [Abstract][Full Text] [Related]
25. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. Palzkill T; Botstein D J Bacteriol; 1992 Aug; 174(16):5237-43. PubMed ID: 1644749 [TBL] [Abstract][Full Text] [Related]
26. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine. Chen CC; Herzberg O Biochemistry; 2001 Feb; 40(8):2351-8. PubMed ID: 11327855 [TBL] [Abstract][Full Text] [Related]
27. Substitution of lysine at position 104 or 240 of TEM-1pTZ18R beta-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam. Sowek JA; Singer SB; Ohringer S; Malley MF; Dougherty TJ; Gougoutas JZ; Bush K Biochemistry; 1991 Apr; 30(13):3179-88. PubMed ID: 1901218 [TBL] [Abstract][Full Text] [Related]
28. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant. Sun T; Bethel CR; Bonomo RA; Knox JR Biochemistry; 2004 Nov; 43(44):14111-7. PubMed ID: 15518561 [TBL] [Abstract][Full Text] [Related]
29. ENDOR structural characterization of a catalytically competent acylenzyme reaction intermediate of wild-type TEM-1 beta-lactamase confirms glutamate-166 as the base catalyst. Mustafi D; Sosa-Peinado A; Makinen MW Biochemistry; 2001 Feb; 40(8):2397-409. PubMed ID: 11327860 [TBL] [Abstract][Full Text] [Related]
30. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487 [TBL] [Abstract][Full Text] [Related]
31. A new TEM beta-lactamase double mutant with broadened specificity reveals substrate-dependent functional interactions. Viadiu H; Osuna J; Fink AL; Soberón X J Biol Chem; 1995 Jan; 270(2):781-7. PubMed ID: 7822311 [TBL] [Abstract][Full Text] [Related]
32. Site-directed mutants, at position 166, of RTEM-1 beta-lactamase that form a stable acyl-enzyme intermediate with penicillin. Adachi H; Ohta T; Matsuzawa H J Biol Chem; 1991 Feb; 266(5):3186-91. PubMed ID: 1993691 [TBL] [Abstract][Full Text] [Related]
33. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase. Palzkill T; Le QQ; Venkatachalam KV; LaRocco M; Ocera H Mol Microbiol; 1994 Apr; 12(2):217-29. PubMed ID: 8057847 [TBL] [Abstract][Full Text] [Related]
34. Ultrahigh resolution structure of a class A beta-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme. Nukaga M; Mayama K; Hujer AM; Bonomo RA; Knox JR J Mol Biol; 2003 Apr; 328(1):289-301. PubMed ID: 12684014 [TBL] [Abstract][Full Text] [Related]
35. Probing the specificity of the subclass B3 FEZ-1 metallo-beta-lactamase by site-directed mutagenesis. Mercuri PS; García-Sáez I; De Vriendt K; Thamm I; Devreese B; Van Beeumen J; Dideberg O; Rossolini GM; Frère JM; Galleni M J Biol Chem; 2004 Aug; 279(32):33630-8. PubMed ID: 15159411 [TBL] [Abstract][Full Text] [Related]
36. Probing the non-proline cis peptide bond in beta-lactamase from Staphylococcus aureus PC1 by the replacement Asn136 --> Ala. Banerjee S; Shigematsu N; Pannell LK; Ruvinov S; Orban J; Schwarz F; Herzberg O Biochemistry; 1997 Sep; 36(36):10857-66. PubMed ID: 9283075 [TBL] [Abstract][Full Text] [Related]
37. Effects of site-specific mutagenesis of tyrosine 105 in a class A beta-lactamase. Escobar WA; Miller J; Fink AL Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):555-8. PubMed ID: 7980417 [TBL] [Abstract][Full Text] [Related]
38. Mutation of serine residue 318 in the class C beta-lactamase of Enterobacter cloacae 908R. Jacobs C; Dubus A; Monnaie D; Normark S; Frère JM FEMS Microbiol Lett; 1992 Apr; 71(1):95-100. PubMed ID: 1624116 [TBL] [Abstract][Full Text] [Related]
39. Molecular genetics of resistance to both ceftazidime and beta-lactam-beta-lactamase inhibitor combinations in Klebsiella pneumoniae and in vivo response to beta-lactam therapy. Rice LB; Carias LL; Bonomo RA; Shlaes DM J Infect Dis; 1996 Jan; 173(1):151-8. PubMed ID: 8537652 [TBL] [Abstract][Full Text] [Related]
40. Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations. Tomatis PE; Rasia RM; Segovia L; Vila AJ Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13761-6. PubMed ID: 16172409 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]