These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 1798703)
41. Replacement of serine 237 in class A beta-lactamase of Proteus vulgaris modifies its unique substrate specificity. Tamaki M; Nukaga M; Sawai T Biochemistry; 1994 Aug; 33(33):10200-6. PubMed ID: 8060986 [TBL] [Abstract][Full Text] [Related]
42. Active-site residues of the transpeptidase domain of penicillin-binding protein 2 from Escherichia coli: similarity in catalytic mechanism to class A beta-lactamases. Adachi H; Ishiguro M; Imajoh S; Ohta T; Matsuzawa H Biochemistry; 1992 Jan; 31(2):430-7. PubMed ID: 1731901 [TBL] [Abstract][Full Text] [Related]
43. A survey of a functional amino acid of class C beta-lactamase corresponding to Glu166 of class A beta-lactamases. Nukaga M; Tanimoto K; Tsukamoto K; Imajo S; Ishiguro M; Sawai T FEBS Lett; 1993 Oct; 332(1-2):93-8. PubMed ID: 8104827 [TBL] [Abstract][Full Text] [Related]
44. Mutations affecting the catalytic activity of Bacillus cereus 5/B/6 beta-lactamase II. Lim HM; Pène JJ J Biol Chem; 1989 Jul; 264(20):11682-7. PubMed ID: 2501295 [TBL] [Abstract][Full Text] [Related]
45. Role of residues 104, 164, 166, 238 and 240 in the substrate profile of PER-1 beta-lactamase hydrolysing third-generation cephalosporins. Bouthors AT; Dagoneau-Blanchard N; Naas T; Nordmann P; Jarlier V; Sougakoff W Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1443-9. PubMed ID: 9494118 [TBL] [Abstract][Full Text] [Related]
46. Function of the conserved triad residues in the class C beta-lactamase from Citrobacter freundii GN346. Tsukamoto K; Nishida N; Tsuruoka M; Sawai T FEBS Lett; 1990 Oct; 271(1-2):243-6. PubMed ID: 2226810 [TBL] [Abstract][Full Text] [Related]
47. Investigation of the mechanism of resistance to third-generation cephalosporins by class C beta-lactamases by using chemical complementation. Carter BT; Lin H; Goldberg SD; Althoff EA; Raushel J; Cornish VW Chembiochem; 2005 Nov; 6(11):2055-67. PubMed ID: 16250067 [TBL] [Abstract][Full Text] [Related]
48. A natural polymorphism in beta-lactamase is a global suppressor. Huang W; Palzkill T Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8801-6. PubMed ID: 9238058 [TBL] [Abstract][Full Text] [Related]
49. An engineered Staphylococcus aureus PC1 beta-lactamase that hydrolyses third-generation cephalosporins. Zawadzke LE; Smith TJ; Herzberg O Protein Eng; 1995 Dec; 8(12):1275-85. PubMed ID: 8869640 [TBL] [Abstract][Full Text] [Related]
50. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme. Stec B; Holtz KM; Wojciechowski CL; Kantrowitz ER Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1072-9. PubMed ID: 16041072 [TBL] [Abstract][Full Text] [Related]
51. Characterization of the plasmid genes blaT-4 and blaT-5 which encode the broad-spectrum beta-lactamases TEM-4 and TEM-5 in enterobacteriaceae. Sougakoff W; Petit A; Goussard S; Sirot D; Bure A; Courvalin P Gene; 1989 May; 78(2):339-48. PubMed ID: 2550326 [TBL] [Abstract][Full Text] [Related]
52. The role of tyrosine 150 in catalysis of beta-lactam hydrolysis by AmpC beta-lactamase from Escherichia coli investigated by site-directed mutagenesis. Dubus A; Normark S; Kania M; Page MG Biochemistry; 1994 Jul; 33(28):8577-86. PubMed ID: 8031792 [TBL] [Abstract][Full Text] [Related]
53. Arginine 220 is a critical residue for the catalytic mechanism of the Streptomyces albus G beta-lactamase. Jacob-Dubuisson F; Lamotte-Brasseur J; Dideberg O; Joris B; Frère JM Protein Eng; 1991 Oct; 4(7):811-9. PubMed ID: 1798704 [TBL] [Abstract][Full Text] [Related]
54. Substitution of Thr for Ala-237 in TEM-17, TEM-12 and TEM-26: alterations in beta-lactam resistance conferred on Escherichia coli. Giakkoupi P; Hujer AM; Miriagou V; Tzelepi E; Bonomo RA; Tzouvelekis LS FEMS Microbiol Lett; 2001 Jul; 201(1):37-40. PubMed ID: 11445164 [TBL] [Abstract][Full Text] [Related]
55. TEM beta-lactamase mutants hydrolysing third-generation cephalosporins. A kinetic and molecular modelling analysis. Raquet X; Lamotte-Brasseur J; Fonzé E; Goussard S; Courvalin P; Frère JM J Mol Biol; 1994 Dec; 244(5):625-39. PubMed ID: 7990143 [TBL] [Abstract][Full Text] [Related]
56. Site-saturation studies of beta-lactamase: production and characterization of mutant beta-lactamases with all possible amino acid substitutions at residue 71. Schultz SC; Richards JH Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1588-92. PubMed ID: 3513181 [TBL] [Abstract][Full Text] [Related]
57. Hyperproduction of inhibitor-susceptible TEM beta-lactamase is responsible for resistance of Serratia marcescens to beta-lactam-beta-lactamase inhibitor combinations. Zhao WH; Hu ZQ; Chen G; Ito R; Shimamura T Chemotherapy; 2008; 54(1):31-7. PubMed ID: 18063864 [TBL] [Abstract][Full Text] [Related]
58. Detrimental effect of the combination of R164S with G238S in TEM-1 beta-lactamase on the extended-spectrum activity conferred by each single mutation. Giakkoupi P; Tzelepi E; Tassios PT; Legakis NJ; Tzouvelekis LS J Antimicrob Chemother; 2000 Jan; 45(1):101-4. PubMed ID: 10629019 [TBL] [Abstract][Full Text] [Related]
59. An ultrahigh resolution structure of TEM-1 beta-lactamase suggests a role for Glu166 as the general base in acylation. Minasov G; Wang X; Shoichet BK J Am Chem Soc; 2002 May; 124(19):5333-40. PubMed ID: 11996574 [TBL] [Abstract][Full Text] [Related]
60. Site-directed mutagenesis of beta-lactamase leading to accumulation of a catalytic intermediate. Escobar WA; Tan AK; Fink AL Biochemistry; 1991 Nov; 30(44):10783-7. PubMed ID: 1681903 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]