These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1798704)

  • 21. Elimination of the hydrolytic water molecule in a class A beta-lactamase mutant: crystal structure and kinetics.
    Zawadzke LE; Chen CC; Banerjee S; Li Z; Wäsch S; Kapadia G; Moult J; Herzberg O
    Biochemistry; 1996 Dec; 35(51):16475-82. PubMed ID: 8987980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple substitutions at position 104 of beta-lactamase TEM-1: assessing the role of this residue in substrate specificity.
    Petit A; Maveyraud L; Lenfant F; Samama JP; Labia R; Masson JM
    Biochem J; 1995 Jan; 305 ( Pt 1)(Pt 1):33-40. PubMed ID: 7826350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-directed mutagenesis of beta-lactamase TEM-1. Investigating the potential role of specific residues on the activity of Pseudomonas-specific enzymes.
    Lenfant F; Petit A; Labia R; Maveyraud L; Samama JP; Masson JM
    Eur J Biochem; 1993 Nov; 217(3):939-46. PubMed ID: 8223651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of site-specific mutagenesis of tyrosine 105 in a class A beta-lactamase.
    Escobar WA; Miller J; Fink AL
    Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):555-8. PubMed ID: 7980417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism.
    Paul-Soto R; Bauer R; Frère JM; Galleni M; Meyer-Klaucke W; Nolting H; Rossolini GM; de Seny D; Hernandez-Valladares M; Zeppezauer M; Adolph HW
    J Biol Chem; 1999 May; 274(19):13242-9. PubMed ID: 10224083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic analysis of TEM1 beta-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations.
    Swarén P; Maveyraud L; Guillet V; Masson JM; Mourey L; Samama JP
    Structure; 1995 Jun; 3(6):603-13. PubMed ID: 8590021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An engineered Staphylococcus aureus PC1 beta-lactamase that hydrolyses third-generation cephalosporins.
    Zawadzke LE; Smith TJ; Herzberg O
    Protein Eng; 1995 Dec; 8(12):1275-85. PubMed ID: 8869640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The diversity of the catalytic properties of class A beta-lactamases.
    Matagne A; Misselyn-Bauduin AM; Joris B; Erpicum T; Granier B; Frère JM
    Biochem J; 1990 Jan; 265(1):131-46. PubMed ID: 2302162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TEM beta-lactamase mutants hydrolysing third-generation cephalosporins. A kinetic and molecular modelling analysis.
    Raquet X; Lamotte-Brasseur J; Fonzé E; Goussard S; Courvalin P; Frère JM
    J Mol Biol; 1994 Dec; 244(5):625-39. PubMed ID: 7990143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1.
    Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O
    Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active-site residues of the transpeptidase domain of penicillin-binding protein 2 from Escherichia coli: similarity in catalytic mechanism to class A beta-lactamases.
    Adachi H; Ishiguro M; Imajoh S; Ohta T; Matsuzawa H
    Biochemistry; 1992 Jan; 31(2):430-7. PubMed ID: 1731901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs.
    Wang X; Minasov G; Shoichet BK
    J Mol Biol; 2002 Jun; 320(1):85-95. PubMed ID: 12079336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-directed mutagenesis on TEM-1 beta-lactamase: role of Glu166 in catalysis and substrate binding.
    Delaire M; Lenfant F; Labia R; Masson JM
    Protein Eng; 1991 Oct; 4(7):805-10. PubMed ID: 1798703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lysine-73 is involved in the acylation and deacylation of beta-lactamase.
    Lietz EJ; Truher H; Kahn D; Hokenson MJ; Fink AL
    Biochemistry; 2000 May; 39(17):4971-81. PubMed ID: 10819961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substitution of lysine at position 104 or 240 of TEM-1pTZ18R beta-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam.
    Sowek JA; Singer SB; Ohringer S; Malley MF; Dougherty TJ; Gougoutas JZ; Bush K
    Biochemistry; 1991 Apr; 30(13):3179-88. PubMed ID: 1901218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of side-chain amide thionation on turnover of beta-lactam substrates by beta-lactamases. Further evidence on the question of side-chain hydrogen-bonding in catalysis.
    Pratt RF; Krishnaraj R; Xu H
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):857-62. PubMed ID: 1417747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An engineered disulfide bond between residues 69 and 238 in extended-spectrum beta-lactamase Toho-1 reduces its activity toward third-generation cephalosporins.
    Shimizu-Ibuka A; Matsuzawa H; Sakai H
    Biochemistry; 2004 Dec; 43(50):15737-45. PubMed ID: 15595829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase.
    Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O
    Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway.
    Valegård K; Iqbal A; Kershaw NJ; Ivison D; Généreux C; Dubus A; Blikstad C; Demetriades M; Hopkinson RJ; Lloyd AJ; Roper DI; Schofield CJ; Andersson I; McDonough MA
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1567-79. PubMed ID: 23897479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.