BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17987295)

  • 21. Influence of elevated temperature on metabolism during aestivation: implications for muscle disuse atrophy.
    Young KM; Cramp RL; White CR; Franklin CE
    J Exp Biol; 2011 Nov; 214(Pt 22):3782-9. PubMed ID: 22031743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skeletal muscle atrophy occurs slowly and selectively during prolonged aestivation in Cyclorana alboguttata (Gunther 1867).
    Mantle BL; Hudson NJ; Harper GS; Cramp RL; Franklin CE
    J Exp Biol; 2009 Nov; 212(Pt 22):3664-72. PubMed ID: 19880728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic depression and Na+/K+ gradients in the aestivating Australian goldfields frog, Neobatrachus wilsmorei.
    Flanigan JE; Withers PC; Fuery CJ; Guppy M
    J Comp Physiol B; 1993; 163(7):587-93. PubMed ID: 8151018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity, abundance and expression of Ca²⁺-activated proteases in skeletal muscle of the aestivating frog, Cyclorana alboguttata.
    Reilly BD; Cramp RL; Franklin CE
    J Comp Physiol B; 2015 Feb; 185(2):243-55. PubMed ID: 25502658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sodium-dependent increase in quantal secretion induced by brevetoxin-3 in Ca2+-free medium is associated with depletion of synaptic vesicles and swelling of motor nerve terminals in situ.
    Meunier FA; Colasante C; Molgo J
    Neuroscience; 1997 Jun; 78(3):883-93. PubMed ID: 9153666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spermatogenesis and plasma testosterone levels in Western Australian burrowing desert frogs, Cyclorana platycephala, Cyclorana maini, and Neobatrachus sutor, during aestivation.
    Shalan AG; Bradshaw SD; Withers PC; Thompson G; Bayomy MF; Bradshaw FJ; Stewart T
    Gen Comp Endocrinol; 2004 Mar; 136(1):90-100. PubMed ID: 14980800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs.
    Cramp RL; Franklin CE
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Dec; 142(4):451-60. PubMed ID: 16257248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dramatic genome-wide reprogramming of mRNA in hypometabolic muscle.
    Hudson NJ; Cramp RL; Franklin CE
    Comp Biochem Physiol B Biochem Mol Biol; 2024; 272():110952. PubMed ID: 38355035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A role for solute carrier family 10 member 4, or vesicular aminergic-associated transporter, in structural remodelling and transmitter release at the mouse neuromuscular junction.
    Patra K; Lyons DJ; Bauer P; Hilscher MM; Sharma S; Leão RN; Kullander K
    Eur J Neurosci; 2015 Feb; 41(3):316-27. PubMed ID: 25410831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depressed Synaptic Transmission and Reduced Vesicle Release Sites in Huntington's Disease Neuromuscular Junctions.
    Khedraki A; Reed EJ; Romer SH; Wang Q; Romine W; Rich MM; Talmadge RJ; Voss AA
    J Neurosci; 2017 Aug; 37(34):8077-8091. PubMed ID: 28724748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic depression during aestivation in Cyclorana alboguttata.
    Kayes SM; Cramp RL; Franklin CE
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Dec; 154(4):557-63. PubMed ID: 19737622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vesicle-associated proteins and quantal release at single active zones of amphibian (Bufo marinus) motor-nerve terminals.
    Macleod GT; Gan J; Bennett MR
    J Neurophysiol; 1999 Sep; 82(3):1133-46. PubMed ID: 10482733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles of SNARE proteins and synaptotagmin I in synaptic transmission: studies at the Drosophila neuromuscular synapse.
    Kidokoro Y
    Neurosignals; 2003; 12(1):13-30. PubMed ID: 12624525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Profiles of evoked release along the length of frog motor nerve terminals.
    D'Alonzo AJ; Grinnell AD
    J Physiol; 1985 Feb; 359():235-58. PubMed ID: 2860241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium channels coupled to neurotransmitter release at dually innervated neuromuscular junctions in the newborn rat.
    Santafé MM; Garcia N; Lanuza MA; Uchitel OD; Tomás J
    Neuroscience; 2001; 102(3):697-708. PubMed ID: 11226706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptotagmin II immunoreactivity in normal and botulinum type-A treated mouse motor nerve terminals.
    Juzans P; Molgo J; Faille L; Angaut-Petit D
    Pflugers Arch; 1996; 431(6 Suppl 2):R283-4. PubMed ID: 8739375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature-sensitive aspects of evoked and spontaneous transmitter release at the frog neuromuscular junction.
    Barrett EF; Barrett JN; Botz D; Chang DB; Mahaffey D
    J Physiol; 1978 Jun; 279():253-73. PubMed ID: 209175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Hyperactive Form of unc-13 Enhances Ca
    Li L; Liu H; Hall Q; Wang W; Yu Y; Kaplan JM; Hu Z
    Cell Rep; 2019 Sep; 28(11):2979-2995.e4. PubMed ID: 31509756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.
    Molgó J; del Pozo E; Baños JE; Angaut-Petit D
    Br J Pharmacol; 1991 Sep; 104(1):133-8. PubMed ID: 1686201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation?
    Withers PC; Guppy M
    J Exp Biol; 1996 Aug; 199(Pt 8):1809-16. PubMed ID: 8708581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.