These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 179881)

  • 1. Thiamine-induced reversible deficiency in respiratory activity of Saccharomyces carlsbergensis: respiratory adaptation caused by pyridoxine.
    Nakamura I; Nishikawa Y; Kamihara T; Fukui S
    FEBS Lett; 1976 Mar; 62(3):354-8. PubMed ID: 179881
    [No Abstract]   [Full Text] [Related]  

  • 2. Respiratory deficiency in Saccharomyces carlsbergensis 4228 caused by thiamine and its prevention by pyridoxine.
    Nakamura I; Nishikawa Y; Kamihara T; Fukui S
    Biochem Biophys Res Commun; 1974 Jul; 59(2):771-6. PubMed ID: 4369146
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of thiamine and pyridoxine on the composition of fatty acids in Saccharomyces carlsbergensis 4228.
    Nishikawa Y; Nakamura I; Kamihara T; Fukui S
    Biochem Biophys Res Commun; 1974 Jul; 59(2):777-80. PubMed ID: 4851781
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of respiration and its related metabolism by vitamin B1 and vitamin B6 in Saccharomyces yeasts.
    Kamihara T; Nakamura I
    Adv Biochem Eng Biotechnol; 1984; 29():35-82. PubMed ID: 6437158
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of thiamine and pyridoxine on the content and composition of sterols in Saccharomyces carlsbergensis 4228.
    Nagai J; Katsuki H; Nishikawa Y; Nakamura I; Kamihara T
    Biochem Biophys Res Commun; 1974 Sep; 60(2):555-60. PubMed ID: 4418731
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of thiamine and pyridoxine on the lipid composition of Saccharomyces carlsbergensis 4228.
    Nishikawa Y; Nakamura I; Kamihara T; Fukui S
    Biochim Biophys Acta; 1977 Mar; 486(3):483-9. PubMed ID: 856287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective effects of chloramphenicol, cycloheximide and nalidixic acid on the biosynthesis of respiratory enzymes in yeast.
    Mahler HR; Perlman P; Henson C; Weber C
    Biochem Biophys Res Commun; 1968 May; 31(3):474-80. PubMed ID: 5653657
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanism of thiamine-induced respiratory deficiency in Saccharomyces carlsbergensis.
    Nakamura I; Isobe N; Nakamura N; Kamihara T; Fukui S
    J Bacteriol; 1981 Sep; 147(3):954-61. PubMed ID: 7275938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in enzyme activities and distributions during glucose de-repression and respiratory adaptation of anaerobically grown Saccharomyces carlsbergensis.
    Cartledge TG; Lloyd D
    Biochem J; 1973 Mar; 132(3):609-21. PubMed ID: 4353383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of antibiotics on the development and stability of mitochondrial enzymes in Saccharomyces cerevisiae.
    Görts CP; Hasilík A
    Eur J Biochem; 1972 Sep; 29(2):282-7. PubMed ID: 4343088
    [No Abstract]   [Full Text] [Related]  

  • 12. Phase transitions in yeast mitochondrial membranes. The effect of temperature on the energies of activation of the respiratory enzymes of Saccharomyces cerevisiae.
    Watson K; Bertoli E; Griffiths DE
    Biochem J; 1975 Feb; 146(2):401-7. PubMed ID: 168875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATPase complex and oxidative phosphorylation in chloramphenicol-induced megamitochondria from mouse liver.
    Wagner T; Rafael J
    Biochim Biophys Acta; 1975 Dec; 408(3):284-96. PubMed ID: 172130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in subcellular distribution of enzymes during respiratory adaptation of Saccharomyces carlsbergensis.
    Lloyd D; Howells L; Cartiledge TG
    Biochem J; 1970 Feb; 116(4):25P. PubMed ID: 4314128
    [No Abstract]   [Full Text] [Related]  

  • 15. Changes in respiratory activities during the cell-cycle of the fission yeast Schizosaccharomyces pompe 972h--growing in the presence of glycerol.
    Poole RK; Lloyd D
    Biochem J; 1974 Oct; 144(1):141-8. PubMed ID: 4156830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry of gingival oxidative metabolism: a review.
    Fine AS; Person P
    J Oral Pathol; 1984 Jun; 13(3):191-212. PubMed ID: 6330331
    [No Abstract]   [Full Text] [Related]  

  • 17. Assembly of inner membrane complexes.
    Tzagoloff A
    Ann N Y Acad Sci; 1974 Feb; 227():521-6. PubMed ID: 4151264
    [No Abstract]   [Full Text] [Related]  

  • 18. Fractionation of the electron-transport chain of Escherichia coli.
    Hendler RW; Burgess AH
    Biochim Biophys Acta; 1974 Aug; 357(2):215-30. PubMed ID: 4154041
    [No Abstract]   [Full Text] [Related]  

  • 19. On the significance of electron transport systems for growth of Rhodospirillum rubrum.
    Oelze J; Fakoussa RM; Hudewentz J
    Arch Microbiol; 1978 Jul; 118(1):127-32. PubMed ID: 211972
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of D (minus)- and L (plus)-threo-chloramphenicol on nucleotide and related respiratory activities in yeast undergoing metabolic repression and de-repression.
    Ball AJ; Tustanoff ER
    Biochim Biophys Acta; 1970 Feb; 199(2):476-89. PubMed ID: 4313887
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.