These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

838 related articles for article (PubMed ID: 17988210)

  • 1. Calcium cycling and signaling in cardiac myocytes.
    Bers DM
    Annu Rev Physiol; 2008; 70():23-49. PubMed ID: 17988210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the secrets of a double life: contractile versus signaling Ca2+ in a cardiac myocyte.
    Goonasekera SA; Molkentin JD
    J Mol Cell Cardiol; 2012 Feb; 52(2):317-22. PubMed ID: 21600216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte.
    Winslow RL; Walker MA; Greenstein JL
    Wiley Interdiscip Rev Syst Biol Med; 2016; 8(1):37-67. PubMed ID: 26562359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium signaling in cardiac ventricular myocytes.
    Bers DM; Guo T
    Ann N Y Acad Sci; 2005 Jun; 1047():86-98. PubMed ID: 16093487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-regulated transcriptional pathways in the normal and pathologic heart.
    Zarain-Herzberg A; Fragoso-Medina J; Estrada-Avilés R
    IUBMB Life; 2011 Oct; 63(10):847-55. PubMed ID: 21901815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-gated calcium channels function as Ca2+-activated signaling receptors.
    Atlas D
    Trends Biochem Sci; 2014 Feb; 39(2):45-52. PubMed ID: 24388968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triadin is a critical determinant of cellular Ca cycling and contractility in the heart.
    Kirchhefer U; Klimas J; Baba HA; Buchwalow IB; Fabritz L; Hüls M; Matus M; Müller FU; Schmitz W; Neumann J
    Am J Physiol Heart Circ Physiol; 2007 Nov; 293(5):H3165-74. PubMed ID: 17890426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triadin overexpression stimulates excitation-contraction coupling and increases predisposition to cellular arrhythmia in cardiac myocytes.
    Terentyev D; Cala SE; Houle TD; Viatchenko-Karpinski S; Gyorke I; Terentyeva R; Williams SC; Gyorke S
    Circ Res; 2005 Apr; 96(6):651-8. PubMed ID: 15731460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes.
    Hatano A; Okada J; Hisada T; Sugiura S
    J Biomech; 2012 Mar; 45(5):815-23. PubMed ID: 22226404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
    Kanaporis G; Blatter LA
    Circ Res; 2015 Feb; 116(5):846-56. PubMed ID: 25532796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of SR Ca2+ release by the triadin-to-calsequestrin ratio in ventricular myocytes.
    Kučerová D; Baba HA; Bokník P; Fabritz L; Heinick A; Mát'uš M; Müller FU; Neumann J; Schmitz W; Kirchhefer U
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2008-17. PubMed ID: 22427521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes.
    Blatter LA; Kockskämper J; Sheehan KA; Zima AV; Hüser J; Lipsius SL
    J Physiol; 2003 Jan; 546(Pt 1):19-31. PubMed ID: 12509476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial calcium uniporter in the heart: energetics and beyond.
    Kwong JQ
    J Physiol; 2017 Jun; 595(12):3743-3751. PubMed ID: 27991671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium signaling in cardiac myocytes.
    Fearnley CJ; Roderick HL; Bootman MD
    Cold Spring Harb Perspect Biol; 2011 Nov; 3(11):a004242. PubMed ID: 21875987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte.
    Cortassa S; Aon MA; O'Rourke B; Jacques R; Tseng HJ; Marbán E; Winslow RL
    Biophys J; 2006 Aug; 91(4):1564-89. PubMed ID: 16679365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes.
    Domeier TL; Zima AV; Maxwell JT; Huke S; Mignery GA; Blatter LA
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H596-604. PubMed ID: 18055509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and mechanism of P2X receptor-mediated increase in cardiac myocyte contractility.
    Shen JB; Shutt R; Pappano A; Liang BT
    Am J Physiol Heart Circ Physiol; 2007 Nov; 293(5):H3056-62. PubMed ID: 17873021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcoplasmic reticulum Ca2+ release in neonatal rat cardiac myocytes.
    Gergs U; Kirchhefer U; Buskase J; Kiele-Dunsche K; Buchwalow IB; Jones LR; Schmitz W; Traub O; Neumann J
    J Mol Cell Cardiol; 2011 Nov; 51(5):682-8. PubMed ID: 21871897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile heterogeneity in ventricular myocardium.
    Pan W; Yang Z; Cheng J; Qian C; Wang Y
    J Cell Physiol; 2018 Aug; 233(8):6273-6279. PubMed ID: 29528120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.