BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17988216)

  • 41. Valproic acid induces neuroendocrine differentiation and UGT2B7 up-regulation in human prostate carcinoma cell line.
    Valentini A; Biancolella M; Amati F; Gravina P; Miano R; Chillemi G; Farcomeni A; Bueno S; Vespasiani G; Desideri A; Federici G; Novelli G; Bernardini S
    Drug Metab Dispos; 2007 Jun; 35(6):968-72. PubMed ID: 17371798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The androgen-conjugating uridine diphosphoglucuronosyltransferase-2B enzymes are differentially expressed temporally and spatially in the monkey follicle throughout the menstrual cycle.
    Barbier O; Girard C; Berger L; El Alfy M; Bélanger A; Hum DW
    Endocrinology; 2001 Jun; 142(6):2499-507. PubMed ID: 11356699
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth hormone (GH) receptors in prostate cancer: gene expression in human tissues and cell lines and characterization, GH signaling and androgen receptor regulation in LNCaP cells.
    Weiss-Messer E; Merom O; Adi A; Karry R; Bidosee M; Ber R; Kaploun A; Stein A; Barkey RJ
    Mol Cell Endocrinol; 2004 May; 220(1-2):109-23. PubMed ID: 15196705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Induction of AP-1 activity by androgen activation of the androgen receptor in LNCaP human prostate carcinoma cells.
    Church DR; Lee E; Thompson TA; Basu HS; Ripple MO; Ariazi EA; Wilding G
    Prostate; 2005 May; 63(2):155-68. PubMed ID: 15486991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of dihydrotestosterone-inactivation activity promotes prostate cancer castration resistance detectable by functional imaging.
    Zhu Z; Chung YM; Sergeeva O; Kepe V; Berk M; Li J; Ko HK; Li Z; Petro M; DiFilippo FP; Lee Z; Sharifi N
    J Biol Chem; 2018 Nov; 293(46):17829-17837. PubMed ID: 30262668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. VPAC1 expression is regulated by FXR agonists in the human gallbladder epithelium.
    Chignard N; Mergey M; Barbu V; Finzi L; Tiret E; Paul A; Housset C
    Hepatology; 2005 Sep; 42(3):549-57. PubMed ID: 16037943
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Androgen-stimulated UDP-glucose dehydrogenase expression limits prostate androgen availability without impacting hyaluronan levels.
    Wei Q; Galbenus R; Raza A; Cerny RL; Simpson MA
    Cancer Res; 2009 Mar; 69(6):2332-9. PubMed ID: 19244115
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men.
    Park J; Chen L; Ratnashinge L; Sellers TA; Tanner JP; Lee JH; Dossett N; Lang N; Kadlubar FF; Ambrosone CB; Zachariah B; Heysek RV; Patterson S; Pow-Sang J
    Cancer Epidemiol Biomarkers Prev; 2006 Aug; 15(8):1473-8. PubMed ID: 16896035
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bile acid-stimulated expression of the farnesoid X receptor enhances the immune response in Barrett esophagus.
    Capello A; Moons LM; Van de Winkel A; Siersema PD; van Dekken H; Kuipers EJ; Kusters JG
    Am J Gastroenterol; 2008 Jun; 103(6):1510-6. PubMed ID: 18510604
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peroxisome proliferator-activated receptor alpha is an androgen-responsive gene in human prostate and is highly expressed in prostatic adenocarcinoma.
    Collett GP; Betts AM; Johnson MI; Pulimood AB; Cook S; Neal DE; Robson CN
    Clin Cancer Res; 2000 Aug; 6(8):3241-8. PubMed ID: 10955810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The atypical GATA protein TRPS1 represses androgen-induced prostate-specific antigen expression in LNCaP prostate cancer cells.
    van den Bemd GJ; Jhamai M; Brinkmann AO; Chang GT
    Biochem Biophys Res Commun; 2003 Dec; 312(3):578-84. PubMed ID: 14680804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression of the androgen metabolizing enzyme UGT2B15 in adipose tissue and relative expression measurement using a competitive RT-PCR method.
    Tchernof A; Lévesque E; Beaulieu M; Couture P; Després JP; Hum DW; Bélanger A
    Clin Endocrinol (Oxf); 1999 May; 50(5):637-42. PubMed ID: 10468930
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer.
    Chang GT; Jhamai M; van Weerden WM; Jenster G; Brinkmann AO
    Endocr Relat Cancer; 2004 Dec; 11(4):815-22. PubMed ID: 15613454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptional Regulation of Human UDP-Glucuronosyltransferase 2B10 by Farnesoid X Receptor in Human Hepatoma HepG2 Cells.
    Lu D; Wang S; Xie Q; Guo L; Wu B
    Mol Pharm; 2017 Sep; 14(9):2899-2907. PubMed ID: 28267333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic variations in UGT2B28, UGT2B17, UGT2B15 genes and the risk of prostate cancer: A case-control study.
    Habibi M; Mirfakhraie R; Khani M; Rakhshan A; Azargashb E; Pouresmaeili F
    Gene; 2017 Nov; 634():47-52. PubMed ID: 28882566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of carbohydrate metabolism by the farnesoid X receptor.
    Stayrook KR; Bramlett KS; Savkur RS; Ficorilli J; Cook T; Christe ME; Michael LF; Burris TP
    Endocrinology; 2005 Mar; 146(3):984-91. PubMed ID: 15564327
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3'-kinase/protein kinase B in prostate cancer cells.
    Mabjeesh NJ; Willard MT; Frederickson CE; Zhong H; Simons JW
    Clin Cancer Res; 2003 Jul; 9(7):2416-25. PubMed ID: 12855613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and activation of the farnesoid X receptor in the vasculature.
    Bishop-Bailey D; Walsh DT; Warner TD
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3668-73. PubMed ID: 14990788
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy.
    Xing X; Burgermeister E; Geisler F; Einwächter H; Fan L; Hiber M; Rauser S; Walch A; Röcken C; Ebeling M; Wright MB; Schmid RM; Ebert MP
    Hepatology; 2009 Mar; 49(3):979-88. PubMed ID: 19072826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic aspects of epitestosterone formation and androgen disposition: influence of polymorphisms in CYP17 and UGT2B enzymes.
    Schulze JJ; Lorentzon M; Ohlsson C; Lundmark J; Roh HK; Rane A; Ekström L
    Pharmacogenet Genomics; 2008 Jun; 18(6):477-85. PubMed ID: 18496127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.