These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 17988274)

  • 81. Experimental basis for realistic large-scale computer simulation of the enteric nervous system.
    Furness JB; Bornstein JC; Kunze WA; Bertrand PP; Kelly H; Thomas EA
    Clin Exp Pharmacol Physiol; 1996 Sep; 23(9):786-92. PubMed ID: 8911714
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Local neural control of intestinal motility: nerve circuits deduced for the guinea-pig small intestine.
    Bornstein JC
    Clin Exp Pharmacol Physiol; 1994 Jun; 21(6):441-52. PubMed ID: 7982274
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody.
    Hoff S; Zeller F; von Weyhern CW; Wegner M; Schemann M; Michel K; Rühl A
    J Comp Neurol; 2008 Aug; 509(4):356-71. PubMed ID: 18512230
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Similarities and differences in the propagation of slow waves and peristaltic waves.
    Lammers WJ; Stephen B; Slack JR
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep; 283(3):G778-86. PubMed ID: 12181194
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Synaptic transmission from the submucosal plexus to the myenteric plexus in Guinea-pig ileum.
    Monro RL; Bornstein JC; Bertrand PP
    Neurogastroenterol Motil; 2008 Oct; 20(10):1165-73. PubMed ID: 18643893
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Enteric co-innervation of striated muscle fibres in human oesophagus.
    Kallmünzer B; Sörensen B; Neuhuber WL; Wörl J
    Neurogastroenterol Motil; 2008 Jun; 20(6):597-610. PubMed ID: 18221249
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Role of somatostatin neurons in intestinal peristalsis: facilitatory interneurons in descending pathways.
    Grider JR; Arimura A; Makhlouf GM
    Am J Physiol; 1987 Oct; 253(4 Pt 1):G434-8. PubMed ID: 2889365
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract.
    Song X; Chen BN; Zagorodnyuk VP; Lynn PA; Blackshaw LA; Grundy D; Brunsden AM; Costa M; Brookes SJ
    Gastroenterology; 2009 Jul; 137(1):274-84, 284.e1. PubMed ID: 19268671
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The role of enteric inhibitory neurons in intestinal motility.
    Costa M; Spencer NJ; Brookes SJH
    Auton Neurosci; 2021 Nov; 235():102854. PubMed ID: 34329834
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity.
    Ro S; Hwang SJ; Muto M; Jewett WK; Spencer NJ
    Am J Physiol Gastrointest Liver Physiol; 2006 Apr; 290(4):G710-8. PubMed ID: 16339294
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Advances in colonic motor complexes in mice.
    Spencer NJ; Costa M; Hibberd TJ; Wood JD
    Am J Physiol Gastrointest Liver Physiol; 2021 Jan; 320(1):G12-G29. PubMed ID: 33085903
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Optogenetic Induction of Colonic Motility in Mice.
    Hibberd TJ; Feng J; Luo J; Yang P; Samineni VK; Gereau RW; Kelley N; Hu H; Spencer NJ
    Gastroenterology; 2018 Aug; 155(2):514-528.e6. PubMed ID: 29782847
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Electrophysiological and morphological properties of submucosal neurons in the mouse distal colon.
    Wong V; Blennerhassett M; Vanner S
    Neurogastroenterol Motil; 2008 Jun; 20(6):725-34. PubMed ID: 18373520
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Disorders of interstitial cells of Cajal.
    Burns AJ
    J Pediatr Gastroenterol Nutr; 2007 Dec; 45 Suppl 2():S103-6. PubMed ID: 18185068
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Mathematical modelling of enteric neural motor patterns.
    Chambers JD; Thomas EA; Bornstein JC
    Clin Exp Pharmacol Physiol; 2014 Mar; 41(3):155-64. PubMed ID: 24471867
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Morphological changes of the enteric nervous system, interstitial cells of cajal, and smooth muscle in children with colonic motility disorders.
    van den Berg MM; Di Lorenzo C; Mousa HM; Benninga MA; Boeckxstaens GE; Luquette M
    J Pediatr Gastroenterol Nutr; 2009 Jan; 48(1):22-9. PubMed ID: 19172119
    [TBL] [Abstract][Full Text] [Related]  

  • 97. High- and medium-molecular-weight neurofilament proteins define specific neuron types in the guinea-pig enteric nervous system.
    Rivera LR; Thacker M; Furness JB
    Cell Tissue Res; 2009 Mar; 335(3):529-38. PubMed ID: 19082842
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Intrinsic innervation of the horse ileum.
    Chiocchetti R; Bombardi C; Mongardi-Fantaguzzi C; Venturelli E; Russo D; Spadari A; Montoneri C; Romagnoli N; Grandis A
    Res Vet Sci; 2009 Oct; 87(2):177-85. PubMed ID: 19380154
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons.
    Tan CO; Bullock D
    J Neurophysiol; 2008 Oct; 100(4):2409-21. PubMed ID: 18715897
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Flow fields generated by peristaltic reflex in isolated guinea pig ileum: impact of contraction depth and shoulders.
    Jeffrey B; Udaykumar HS; Schulze KS
    Am J Physiol Gastrointest Liver Physiol; 2003 Nov; 285(5):G907-18. PubMed ID: 14561588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.