These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17988389)

  • 1. Analysis of feedback loops and robustness in network evolution based on Boolean models.
    Kwon YK; Cho KH
    BMC Bioinformatics; 2007 Nov; 8():430. PubMed ID: 17988389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boolean dynamics of biological networks with multiple coupled feedback loops.
    Kwon YK; Cho KH
    Biophys J; 2007 Apr; 92(8):2975-81. PubMed ID: 17259267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methodology for the structural and functional analysis of signaling and regulatory networks.
    Klamt S; Saez-Rodriguez J; Lindquist JA; Simeoni L; Gilles ED
    BMC Bioinformatics; 2006 Feb; 7():56. PubMed ID: 16464248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations into the relationship between feedback loops and functional importance of a signal transduction network based on Boolean network modeling.
    Kwon YK; Choi SS; Cho KH
    BMC Bioinformatics; 2007 Oct; 8():384. PubMed ID: 17935633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical Robustness against Multiple Mutations in Signaling Networks.
    Kwon YK; Kim J; Cho KH
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):996-1002. PubMed ID: 26529781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent coupling of feedback loops: a design principle of cell signaling networks.
    Kwon YK; Cho KH
    Bioinformatics; 2008 Sep; 24(17):1926-32. PubMed ID: 18596076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Threshold-dominated regulation hides genetic variation in gene expression networks.
    Gjuvsland AB; Plahte E; Omholt SW
    BMC Syst Biol; 2007 Dec; 1():57. PubMed ID: 18062810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent criticality from coevolution in random Boolean networks.
    Liu M; Bassler KE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041910. PubMed ID: 17155099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of negative feedback loops on the dynamics of boolean networks.
    Sontag E; Veliz-Cuba A; Laubenbacher R; Jarrah AS
    Biophys J; 2008 Jul; 95(2):518-26. PubMed ID: 18375509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture-dependent robustness in a class of multiple positive feedback loops.
    Shi C; Li HX; Zhou T
    IET Syst Biol; 2013 Feb; 7(1):1-10. PubMed ID: 23848050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetries, stability, and control in nonlinear systems and networks.
    Russo G; Slotine JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041929. PubMed ID: 22181197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistability, oscillations and bifurcations in feedback loops.
    Leite MC; Wang Y
    Math Biosci Eng; 2010 Jan; 7(1):83-97. PubMed ID: 20104950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NetDS: a Cytoscape plugin to analyze the robustness of dynamics and feedforward/feedback loop structures of biological networks.
    Le DH; Kwon YK
    Bioinformatics; 2011 Oct; 27(19):2767-8. PubMed ID: 21828085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential attachment in the evolution of metabolic networks.
    Light S; Kraulis P; Elofsson A
    BMC Genomics; 2005 Nov; 6():159. PubMed ID: 16281983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of robust regulatory motifs from in silico evolution of sustained oscillation.
    Jin Y; Meng Y
    Biosystems; 2011 Jan; 103(1):38-44. PubMed ID: 20920549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bistability in feedback circuits as a byproduct of evolution of evolvability.
    Kuwahara H; Soyer OS
    Mol Syst Biol; 2012 Jan; 8():564. PubMed ID: 22252387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics.
    Kwon YK; Cho KH
    Bioinformatics; 2008 Apr; 24(7):987-94. PubMed ID: 18285369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A natural class of robust networks.
    Aldana M; Cluzel P
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8710-4. PubMed ID: 12853565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics of conjunctive and disjunctive Boolean network models.
    Jarrah AS; Laubenbacher R; Veliz-Cuba A
    Bull Math Biol; 2010 Aug; 72(6):1425-47. PubMed ID: 20087672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling.
    Zhang XP; Cheng Z; Liu F; Wang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031924. PubMed ID: 17930288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.