These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 1798852)
1. [Photocontrol of the synthesis of chlorophyll a and phycocyanin in the cyanobacterium Calothrix crustacea Schousboe]. Luzardo AD; Niell FX; López-Figueroa F Rev Esp Fisiol; 1991 Sep; 47(3):109-14. PubMed ID: 1798852 [TBL] [Abstract][Full Text] [Related]
2. Spontaneous pigment mutants of Anacystis nidulans selected by growth under far-red light. Myers J; Graham JR; Wang RT Arch Microbiol; 1980 Feb; 124(2-3):143-8. PubMed ID: 6768347 [TBL] [Abstract][Full Text] [Related]
3. [Control of chlorophyll a synthesis by phytochrome and cryptochrome in the red alga Corallina elongata Ellis et Soland]. López-Figueroa F; Niell FX Rev Esp Fisiol; 1988 Sep; 44(3):287-94. PubMed ID: 3231882 [TBL] [Abstract][Full Text] [Related]
4. The photoregulated expression of multiple phycocyanin species. A general mechanism for the control of phycocyanin synthesis in chromatically adapting cyanobacteria. Bryant DA Eur J Biochem; 1981 Oct; 119(2):425-9. PubMed ID: 6796414 [TBL] [Abstract][Full Text] [Related]
5. The effect of gabaculine on tetrapyrrole biosynthesis and heterotrophic growth in Cyanidium caldarium. Houghton JD; Turner L; Brown SB Biochem J; 1988 Sep; 254(3):907-10. PubMed ID: 3196303 [TBL] [Abstract][Full Text] [Related]
6. Changes in photosynthetic rate and pigment content of blue-green algae in Lake Mendota. Konopka A; Brock TD Appl Environ Microbiol; 1978 Mar; 35(3):527-32. PubMed ID: 416753 [TBL] [Abstract][Full Text] [Related]
7. Effect of levulinic acid on pigment biosynthesis in Agmenellum quadruplicatum. Kipe-Nolt JA; Stevens SE J Bacteriol; 1979 Jan; 137(1):146-52. PubMed ID: 104956 [TBL] [Abstract][Full Text] [Related]
8. The effect of N-methylprotoporphyrin IX on the synthesis of photosynthetic pigments in Cyanidium caldarium. Further evidence for the role of haem in the biosynthesis of plant billins. Brown SB; Holroyd JA; Vernon DI; Troxler RF; Smith KM Biochem J; 1982 Nov; 208(2):487-91. PubMed ID: 6760860 [TBL] [Abstract][Full Text] [Related]
9. Complete nucleotide sequence of the red-light specific set of phycocyanin genes from the cyanobacterium Calothrix PCC 7601. Capuano V; Mazel D; Tandeau de Marsac N; Houmard J Nucleic Acids Res; 1988 Feb; 16(4):1626. PubMed ID: 3126486 [No Abstract] [Full Text] [Related]
10. Effect of carbon dioxide on pigment and membrane content in Synechococcus lividus. Miller LS; Holt SC Arch Microbiol; 1977 Nov; 115(2):185-98. PubMed ID: 413524 [TBL] [Abstract][Full Text] [Related]
11. Occurrence and nature of chromatic adaptation in cyanobacteria. Tandeau de Marsac N J Bacteriol; 1977 Apr; 130(1):82-91. PubMed ID: 856789 [TBL] [Abstract][Full Text] [Related]
12. Effect of glucose and light-dark environment on pigmentation profiles in the cyanobacterium Calothrix elenkenii. Prasanna R; Pabby A; Singh PK Folia Microbiol (Praha); 2004; 49(1):26-30. PubMed ID: 15114861 [TBL] [Abstract][Full Text] [Related]
13. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Narikawa R; Fushimi K; Ni-Ni-Win ; Ikeuchi M Biochem Biophys Res Commun; 2015 May; 461(2):390-5. PubMed ID: 25892514 [TBL] [Abstract][Full Text] [Related]
14. Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. Mishra SK; Shrivastav A; Maurya RR; Patidar SK; Haldar S; Mishra S Protein Expr Purif; 2012 Jan; 81(1):5-10. PubMed ID: 21906679 [TBL] [Abstract][Full Text] [Related]
15. A phosphorylated DNA-binding protein is specific for the red-light signal during complementary chromatic adaptation in cyanobacteria. Sobczyk A; Bely A; Tandeau de Marsac N; Houmard J Mol Microbiol; 1994 Sep; 13(5):875-85. PubMed ID: 7815945 [TBL] [Abstract][Full Text] [Related]
16. [Pigment degradation in Synechocystis aquatilis under nitrogen starvation with varying illumination]. Shenderova LV; Venediktov PS Mikrobiologiia; 1980; 49(6):906-10. PubMed ID: 6782435 [TBL] [Abstract][Full Text] [Related]
17. Acclimation process of the chlorophyll d-bearing cyanobacterium Acaryochloris marina to an orange light environment revealed by transcriptomic analysis and electron microscopic observation. Kashimoto T; Miyake K; Sato M; Maeda K; Matsumoto C; Ikeuchi M; Toyooka K; Watanabe S; Kanesaki Y; Narikawa R J Gen Appl Microbiol; 2020 Jun; 66(2):106-115. PubMed ID: 32147625 [TBL] [Abstract][Full Text] [Related]
18. [Comparative study of the functions of the spheroplasts and cells of the blue-green alga Anabaena variabilis]. Korzhenevskaia TG; Nikitina KA; Gusev MV Mikrobiologiia; 1975; 44(3):485-8. PubMed ID: 808691 [TBL] [Abstract][Full Text] [Related]
19. Chromatic adaptation in a mutant of Fremyella diplosiphon incapable of phycoerythrin synthesis. Beguin S; Guglielmi G; Rippka R; Cohen-Bazire G Biochimie; 1985 Jan; 67(1):109-17. PubMed ID: 3922434 [TBL] [Abstract][Full Text] [Related]
20. Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix. Campbell D Microbiology (Reading); 1996 May; 142(5):1255-1263. PubMed ID: 33725794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]