These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 17988636)

  • 1. Attention governs action in the primate frontal eye field.
    Schafer RJ; Moore T
    Neuron; 2007 Nov; 56(3):541-51. PubMed ID: 17988636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Where do i look? From attention to action in the frontal eye field.
    Everling S
    Neuron; 2007 Nov; 56(3):417-9. PubMed ID: 17988626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating invisible target speed from neuronal activity in monkey frontal eye field.
    Barborica A; Ferrera VP
    Nat Neurosci; 2003 Jan; 6(1):66-74. PubMed ID: 12483216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation.
    Knight TA; Fuchs AF
    J Neurophysiol; 2007 Jan; 97(1):618-34. PubMed ID: 17065243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontal eye field activity preceding aurally guided saccades.
    Russo GS; Bruce CJ
    J Neurophysiol; 1994 Mar; 71(3):1250-3. PubMed ID: 8201415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields.
    Russo GS; Bruce CJ
    J Neurophysiol; 1993 Mar; 69(3):800-18. PubMed ID: 8385196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention.
    Cutrell EB; Marrocco RT
    Exp Brain Res; 2002 May; 144(1):103-13. PubMed ID: 11976764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation of frontal eye field activity to saccade initiation during a countermanding task.
    Brown JW; Hanes DP; Schall JD; Stuphorn V
    Exp Brain Res; 2008 Sep; 190(2):135-51. PubMed ID: 18604527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response properties of fixation neurons and their location in the frontal eye field in the monkey.
    Izawa Y; Suzuki H; Shinoda Y
    J Neurophysiol; 2009 Oct; 102(4):2410-22. PubMed ID: 19675294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Sources of Variability Affect Eye Movement Preparation.
    Khanna SB; Snyder AC; Smith MA
    J Neurosci; 2019 Jun; 39(23):4511-4526. PubMed ID: 30914447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccadic interception of a moving visual target after a spatiotemporal perturbation.
    Fleuriet J; Goffart L
    J Neurosci; 2012 Jan; 32(2):452-61. PubMed ID: 22238081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory-Motor Transformation.
    Sajad A; Sadeh M; Yan X; Wang H; Crawford JD
    eNeuro; 2016; 3(2):. PubMed ID: 27092335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressive control of optokinetic and vestibular nystagmus by the primate frontal eye field.
    Izawa Y; Suzuki H
    J Neurophysiol; 2020 Sep; 124(3):691-702. PubMed ID: 32727256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serial linkage of target selection for orienting and tracking eye movements.
    Gardner JL; Lisberger SG
    Nat Neurosci; 2002 Sep; 5(9):892-9. PubMed ID: 12145637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct contribution of the frontal eye field to the visual representation of saccadic targets.
    Noudoost B; Clark KL; Moore T
    J Neurosci; 2014 Mar; 34(10):3687-98. PubMed ID: 24599467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation.
    Tehovnik EJ; Lee K
    Exp Brain Res; 1993; 96(3):430-42. PubMed ID: 8299745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades.
    Dias EC; Segraves MA
    J Neurophysiol; 1999 May; 81(5):2191-214. PubMed ID: 10322059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Localization of the Frontal Eye Fields in the Common Marmoset Using Microstimulation.
    Selvanayagam J; Johnston KD; Schaeffer DJ; Hayrynen LK; Everling S
    J Neurosci; 2019 Nov; 39(46):9197-9206. PubMed ID: 31582528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.