BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 17988700)

  • 1. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.
    Ohta Y; Suzuki KT
    Toxicol Appl Pharmacol; 2008 Jan; 226(2):169-77. PubMed ID: 17988700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Availability and metabolism of 77Se-methylseleninic acid compared simultaneously with those of three related selenocompounds.
    Suzuki KT; Ohta Y; Suzuki N
    Toxicol Appl Pharmacol; 2006 Nov; 217(1):51-62. PubMed ID: 16962623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic transformation of methylseleninic acid through key selenium intermediate selenide.
    Suzuki KT; Kurasaki K; Ogawa S; Suzuki N
    Toxicol Appl Pharmacol; 2006 Sep; 215(2):189-97. PubMed ID: 16600319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of 76Se-methylselenocysteine compared with that of 77Se-selenomethionine and 82Se-selenite.
    Suzuki KT; Doi C; Suzuki N
    Toxicol Appl Pharmacol; 2006 Dec; 217(2):185-95. PubMed ID: 17056079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation analysis of selenium metabolites in urine and breath by HPLC- and GC-inductively coupled plasma-MS after administration of selenomethionine and methylselenocysteine to rats.
    Ohta Y; Kobayashi Y; Konishi S; Hirano S
    Chem Res Toxicol; 2009 Nov; 22(11):1795-801. PubMed ID: 19715347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous tracing of 76Se-selenite and 77Se-selenomethionine by absolute labeling and speciation.
    Suzuki KT; Somekawa L; Kurasaki K; Suzuki N
    Toxicol Appl Pharmacol; 2006 Nov; 217(1):43-50. PubMed ID: 16956638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide.
    Suzuki KT; Kurasaki K; Suzuki N
    Biochim Biophys Acta; 2007 Jul; 1770(7):1053-61. PubMed ID: 17451884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolites of sodium selenite and methylated selenium compounds administered at cancer chemoprevention levels in the rat.
    Vadhanavikit S; Ip C; Ganther HE
    Xenobiotica; 1993 Jul; 23(7):731-45. PubMed ID: 8237056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of selenite to selenosugar and trimethylselenonium in vivo: tissue dependency and requirement for S-adenosylmethionine-dependent methylation.
    Jackson MI; Lunøe K; Gabel-Jensen C; Gammelgaard B; Combs GF
    J Nutr Biochem; 2013 Dec; 24(12):2023-30. PubMed ID: 24139672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential organ distribution of methylselenol source Se-methylselenocysteine relative to methylseleninic acid.
    Suzuki KT; Tsuji Y; Ohta Y; Suzuki N
    Toxicol Appl Pharmacol; 2008 Feb; 227(1):76-83. PubMed ID: 18035386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and reuse of 76Se-selenosugar in selenium-deficient rats.
    Suzuki KT; Somekawa L; Suzuki N
    Toxicol Appl Pharmacol; 2006 Oct; 216(2):303-8. PubMed ID: 16842833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homocysteine-dependent demethylation of trimethylselenonium ion and selenobetaine with methionine formation.
    Goeger DE; Ganther HE
    Arch Biochem Biophys; 1993 Apr; 302(1):222-7. PubMed ID: 8470900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of dimethyl selenide and trimethylselenonium from selenobetaine in the rat.
    Foster SJ; Kraus RJ; Ganther HE
    Arch Biochem Biophys; 1986 May; 247(1):12-9. PubMed ID: 3707137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic pathway for selenium in the body: speciation by HPLC-ICP MS with enriched Se.
    Suzuki KT; Ogra Y
    Food Addit Contam; 2002 Oct; 19(10):974-83. PubMed ID: 12443560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GC-ICP-MS determination of dimethylselenide in human breath after ingestion of (77)Se-enriched selenite: monitoring of in-vivo methylation of selenium.
    Kremer D; Ilgen G; Feldmann J
    Anal Bioanal Chem; 2005 Oct; 383(3):509-15. PubMed ID: 16158304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological availability of selenosugars in rats.
    Juresa D; Blanusa M; Francesconi KA; Kienzl N; Kuehnelt D
    Chem Biol Interact; 2007 Jul; 168(3):203-10. PubMed ID: 17532309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical form of selenium, critical metabolites, and cancer prevention.
    Ip C; Hayes C; Budnick RM; Ganther HE
    Cancer Res; 1991 Jan; 51(2):595-600. PubMed ID: 1824684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of vitamin B12 status on selenium methylation and toxicity in rats: in vivo and in vitro studies.
    Chen CL; Whanger PD
    Toxicol Appl Pharmacol; 1993 Jan; 118(1):65-72. PubMed ID: 8430425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodate-oxidized adenosine inhibits the formation of dimethylselenide and trimethylselenonium ion in mice treated with selenite.
    Hoffman JL; McConnell KP
    Arch Biochem Biophys; 1987 May; 254(2):534-40. PubMed ID: 3579317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of moisture and casein on demethylation of trimethylselenonium in soil.
    Zhang Y; Frankenberger WT
    Sci Total Environ; 2000 Aug; 257(2-3):111-9. PubMed ID: 10989921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.