BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 17988700)

  • 21. Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.
    Fernandes AP; Wallenberg M; Gandin V; Misra S; Tisato F; Marzano C; Rigobello MP; Kumar S; Björnstedt M
    PLoS One; 2012; 7(11):e50727. PubMed ID: 23226364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotransformation of L-selenomethionine and selenite in rat gut contents.
    Krittaphol W; McDowell A; Thomson CD; Mikov M; Fawcett JP
    Biol Trace Elem Res; 2011 Feb; 139(2):188-96. PubMed ID: 20229173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of methylmercury and organic acid mercurials on the disposition of exogenous selenium in rats.
    Gregus Z; Gyurasics A; Csanaky I; Pintér Z
    Toxicol Appl Pharmacol; 2001 Jul; 174(2):177-87. PubMed ID: 11446833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of dose on the methylation of selenium to monomethylselenol and trimethylselenonium ion in rats.
    Itoh M; Suzuki KT
    Arch Toxicol; 1997; 71(7):461-6. PubMed ID: 9209693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative and qualitative trapping of volatile methylated selenium species entrained through nitric acid.
    Winkel L; Feldmann J; Meharg AA
    Environ Sci Technol; 2010 Jan; 44(1):382-7. PubMed ID: 19950978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of selenium excretion in bile by sulfobromophthalein: elucidation of the mechanism.
    Gregus Z; Perjési P; Gyurasics A
    Biochem Pharmacol; 1998 Nov; 56(10):1391-402. PubMed ID: 9825739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selenosugar and trimethylselenonium among urinary Se metabolites: dose- and age-related changes.
    Suzuki KT; Kurasaki K; Okazaki N; Ogra Y
    Toxicol Appl Pharmacol; 2005 Aug; 206(1):1-8. PubMed ID: 15963339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of methylselenol, dimethylselenide and dimethyldiselenide in in vitro metabolism models determined by headspace GC-MS.
    Gabel-Jensen C; Lunøe K; Gammelgaard B
    Metallomics; 2010 Feb; 2(2):167-73. PubMed ID: 21069149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selenium compounds modulate the activity of recombinant rat AsIII-methyltransferase and the methylation of arsenite by rat and human hepatocytes.
    Walton FS; Waters SB; Jolley SL; LeCluyse EL; Thomas DJ; Styblo M
    Chem Res Toxicol; 2003 Mar; 16(3):261-5. PubMed ID: 12641425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of L-selenomethionine and selenite by probiotic bacteria: in vitro and in vivo studies.
    Krittaphol W; Wescombe PA; Thomson CD; McDowell A; Tagg JR; Fawcett JP
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1358-69. PubMed ID: 21494803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selenium metabolism in rats with long-term ingestion of Se-methylselenocysteine using enriched stable isotopes.
    Tsuji Y; Suzuki N; T Suzuki K; Ogra Y
    J Toxicol Sci; 2009 Apr; 34(2):191-200. PubMed ID: 19336976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activities of structurally-related lipophilic selenium compounds as cancer chemopreventive agents.
    Ip C; Lisk DJ; Ganther HE
    Anticancer Res; 1998; 18(6A):4019-25. PubMed ID: 9891440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of human squalene monooxygenase by selenium compounds.
    Gupta N; Porter TD
    J Biochem Mol Toxicol; 2002; 16(1):18-23. PubMed ID: 11857773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of dimethylselenide to dimethylselenoxide by microsomes from rat liver and lung and by flavin-containing monooxygenase from pig liver.
    Goeger DE; Ganther HE
    Arch Biochem Biophys; 1994 May; 310(2):448-51. PubMed ID: 8179331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenoamino acids.
    Spallholz JE; Palace VP; Reid TW
    Biochem Pharmacol; 2004 Feb; 67(3):547-54. PubMed ID: 15037206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Selenium methylation and toxicity mechanism of selenocystine].
    Sayato Y; Nakamuro K; Hasegawa T
    Yakugaku Zasshi; 1997 Nov; 117(10-11):665-72. PubMed ID: 9414580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detoxification of selenite to form selenocyanate in mammalian cells.
    Anan Y; Kimura M; Hayashi M; Koike R; Ogra Y
    Chem Res Toxicol; 2015 Sep; 28(9):1803-14. PubMed ID: 26243445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of animal and plant selenometabolites in roots of a selenium accumulator, Brassica rapa var. peruviridis, by speciation.
    Ogra Y; Katayama A; Ogihara Y; Yawata A; Anan Y
    Metallomics; 2013 May; 5(5):429-36. PubMed ID: 23348393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolism of selenocyanate in the rat.
    Vadhanavikit S; Kraus RJ; Ganther HE
    Arch Biochem Biophys; 1987 Oct; 258(1):1-6. PubMed ID: 3662536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capabilities of HPLC with APEX-Q nebulisation ICP-MS and ESI MS/MS to compare selenium uptake and speciation of non-malignant with different B cell lymphoma lines.
    Goenaga-Infante H; Kassam S; Stokes E; Hopley C; Joel SP
    Anal Bioanal Chem; 2011 Feb; 399(5):1789-97. PubMed ID: 21140135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.