These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17988708)

  • 1. Source tracking of microbial intrusion in water systems using artificial neural networks.
    Kim M; Choi CY; Gerba CP
    Water Res; 2008 Feb; 42(4-5):1308-14. PubMed ID: 17988708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of a decision-supporting model for identifying the source location of microbial intrusions in real gravity sewer systems.
    Kim M; Choi CY; Gerba CP
    Water Res; 2013 Sep; 47(13):4630-8. PubMed ID: 23770478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pollutant intrusion modeling in water distribution networks using artificial neural networks.
    Singh RM; Rahul AI
    J Environ Sci Eng; 2011 Jul; 53(3):245-56. PubMed ID: 23029924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of sampling depth on Escherichia coli concentrations in beach monitoring.
    Kleinheinz GT; McDermott CM; Leewis MC; Englebert E
    Water Res; 2006 Dec; 40(20):3831-7. PubMed ID: 17049581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locating Escherichia coli contamination in a rural South Carolina watershed.
    Kloot RW
    J Environ Manage; 2007 Jun; 83(4):402-8. PubMed ID: 16814453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience with the antibiotic resistance analysis and DNA fingerprinting in tracking faecal pollution at two lake beaches.
    Edge TA; Hill S; Stinson G; Seto P; Marsalek J
    Water Sci Technol; 2007; 56(11):51-8. PubMed ID: 18057641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-point source pollution: determination of replication versus persistence of Escherichia coli in surface water and sediments with correlation of levels to readily measurable environmental parameters.
    Kinzelman J; McLellan SL; Daniels AD; Cashin S; Singh A; Gradus S; Bagley R
    J Water Health; 2004 Jun; 2(2):103-14. PubMed ID: 15387134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different model approaches for a hygiene early warning system at the lower Ruhr River, Germany.
    Mälzer HJ; Aus der Beek T; Müller S; Gebhardt J
    Int J Hyg Environ Health; 2016 Oct; 219(7 Pt B):671-680. PubMed ID: 26163780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting near-shore coliform bacteria concentrations using ANNS.
    Lin B; Kashefipour SM; Falconer RA
    Water Sci Technol; 2003; 48(10):225-32. PubMed ID: 15137174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA.
    Fries JS; Characklis GW; Noble RT
    Water Res; 2008 Feb; 42(4-5):941-50. PubMed ID: 17945328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli in urban stormwater: explaining their variability.
    McCarthy DT; Mitchell VG; Deletic A; Diaper C
    Water Sci Technol; 2007; 56(11):27-34. PubMed ID: 18057638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine - an artificial neural network approach.
    Zaqoot HA; Ansari AK; Unar MA; Khan SH
    Water Sci Technol; 2009; 60(12):3051-9. PubMed ID: 19955628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres.
    Auckenthaler A; Raso G; Huggenberger P
    Water Sci Technol; 2002; 46(3):131-8. PubMed ID: 12227598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faecal pollution source identification in an urbanizing catchment using antibiotic resistance profiling, discriminant analysis and partial least squares regression.
    Carroll SP; Dawes L; Hargreaves M; Goonetilleke A
    Water Res; 2009 Mar; 43(5):1237-46. PubMed ID: 19168199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The presence of E. coli O 157 in the surface and underground waters].
    Michalska-Szymaszek M
    Rocz Panstw Zakl Hig; 2007; 58(3):579-84. PubMed ID: 18246664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ANN application for water quality forecasting.
    Palani S; Liong SY; Tkalich P
    Mar Pollut Bull; 2008 Sep; 56(9):1586-97. PubMed ID: 18635240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The study of diagnostic techniques for the sources of Escherichia coli at Ta-An Beach.
    Hwang HY; Fang HY
    Water Sci Technol; 2009; 60(2):389-98. PubMed ID: 19633381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of two spike-and-recovery controls for assessment of extraction efficiency in microbial source tracking studies.
    Stoeckel DM; Stelzer EA; Dick LK
    Water Res; 2009 Nov; 43(19):4820-7. PubMed ID: 19589555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial water quality and influences of fecal accumulation from a dog exercise area.
    Garfield L; Walker M
    J Environ Health; 2008 Nov; 71(4):24-9. PubMed ID: 19004392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA.
    He LM; He ZL
    Water Res; 2008 May; 42(10-11):2563-73. PubMed ID: 18242661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.