These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 17988708)
21. Stormwater overflow impacts on the sanitary quality of bathing waters. Soyeux E; Blanchet F; Tisserand B Water Sci Technol; 2007; 56(11):43-50. PubMed ID: 18057640 [TBL] [Abstract][Full Text] [Related]
22. A neural network model for predicting aquifer water level elevations. Coppola EA; Rana AJ; Poulton MM; Szidarovszky F; Uhl VW Ground Water; 2005; 43(2):231-41. PubMed ID: 15819944 [TBL] [Abstract][Full Text] [Related]
23. Predicting conductance due to upconing using neural networks. Coppola EA; McLane CF; Poulton MM; Szidarovszky F; Magelky RD Ground Water; 2005; 43(6):827-36. PubMed ID: 16324004 [TBL] [Abstract][Full Text] [Related]
24. False-negative beta-D-glucuronidase reactions in membrane lactose glucuronide agar medium used for the simultaneous detection of coliforms and Escherichia coli from water. Fricker CR; DeSarno M; Warden PS; Eldred BJ Lett Appl Microbiol; 2008 Dec; 47(6):539-42. PubMed ID: 19120922 [TBL] [Abstract][Full Text] [Related]
25. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Nevers MB; Whitman RL Water Res; 2005 Dec; 39(20):5250-60. PubMed ID: 16310242 [TBL] [Abstract][Full Text] [Related]
26. Use of artificial neural networks to evaluate the effectiveness of riverbank filtration. Sahoo GB; Ray C; Wang JZ; Hubbs SA; Song R; Jasperse J; Seymour D Water Res; 2005 Jul; 39(12):2505-16. PubMed ID: 15990145 [TBL] [Abstract][Full Text] [Related]
27. A hybrid artificial neural network-numerical model for ground water problems. Szidarovszky F; Coppola EA; Long J; Hall AD; Poulton MM Ground Water; 2007; 45(5):590-600. PubMed ID: 17760585 [TBL] [Abstract][Full Text] [Related]
28. Comparison of immunomagnetic separation/adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater. Bushon RN; Likirdopulos CA; Brady AM Water Res; 2009 Nov; 43(19):4940-6. PubMed ID: 19628248 [TBL] [Abstract][Full Text] [Related]
29. Artificial neural network modelling: a summary of successful applications relative to microbial water quality. Brion GM; Lingireddy S Water Sci Technol; 2003; 47(3):235-40. PubMed ID: 12639035 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Fremaux B; Gritzfeld J; Boa T; Yost CK Water Res; 2009 Nov; 43(19):4838-49. PubMed ID: 19604534 [TBL] [Abstract][Full Text] [Related]
31. Faecal contamination over flood events in a pastoral agricultural stream in New Zealand. Nagels JW; Davies-Colley RJ; Donnison AM; Muirhead RW Water Sci Technol; 2002; 45(12):45-52. PubMed ID: 12201126 [TBL] [Abstract][Full Text] [Related]
32. Applications of Artificial Neural Networks in integrated water management: fiction or future? Schulze FH; Wolf H; Jansen HW; van der Veer P Water Sci Technol; 2005; 52(9):21-31. PubMed ID: 16445170 [TBL] [Abstract][Full Text] [Related]
33. Specific detection of Escherichia coli isolated from water samples using polymerase chain reaction targeting four genes: cytochrome bd complex, lactose permease, beta-D-glucuronidase, and beta-D-galactosidase. Horakova K; Mlejnkova H; Mlejnek P J Appl Microbiol; 2008 Oct; 105(4):970-6. PubMed ID: 18489560 [TBL] [Abstract][Full Text] [Related]
34. Seasonal variation in accurate identification of Escherichia coli within a constructed wetland receiving tertiary-treated municipal effluent. McLain JE; Williams CF Water Res; 2008 Sep; 42(15):4041-8. PubMed ID: 18674793 [TBL] [Abstract][Full Text] [Related]
35. Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network. Kirschner AK; Kavka GG; Velimirov B; Mach RL; Sommer R; Farnleitner AH Water Res; 2009 Aug; 43(15):3673-84. PubMed ID: 19552934 [TBL] [Abstract][Full Text] [Related]
36. Application of artificial neural network for the identification of fresh water bacteria. Giacomini M; Ruggiero C; Caneva F; Bertone S Stud Health Technol Inform; 2000; 77():106-10. PubMed ID: 11187484 [TBL] [Abstract][Full Text] [Related]
37. gfp-Tagged cells as a useful tool to study the survival of Escherichia coli in the presence of the river microbial community. Arana I; Irizar A; Seco C; Muela A; Fernández-Astorga A; Barcina I Microb Ecol; 2003 Jan; 45(1):29-38. PubMed ID: 12447583 [TBL] [Abstract][Full Text] [Related]
38. Effects of the nuisance algae, Cladophora, on Escherichia coli at recreational beaches in Wisconsin. Englebert ET; McDermott C; Kleinheinz GT Sci Total Environ; 2008 Oct; 404(1):10-7. PubMed ID: 18639919 [TBL] [Abstract][Full Text] [Related]
39. Method for rapid detection of viable Escherichia coli in water using real-time NASBA. Heijnen L; Medema G Water Res; 2009 Jul; 43(12):3124-32. PubMed ID: 19476965 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Kuo YM; Liu CW; Lin KH Water Res; 2004 Jan; 38(1):148-58. PubMed ID: 14630112 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]