These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 17988862)

  • 1. Forming electrochemically active biofilms from garden compost under chronoamperometry.
    Parot S; Délia ML; Bergel A
    Bioresour Technol; 2008 Jul; 99(11):4809-16. PubMed ID: 17988862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost.
    Parot S; Nercessian O; Delia ML; Achouak W; Bergel A
    J Appl Microbiol; 2009 Apr; 106(4):1350-9. PubMed ID: 19228259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.
    Erable B; Bergel A
    Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine aerobic biofilm as biocathode catalyst.
    Erable B; Vandecandelaere I; Faimali M; Delia ML; Etcheverry L; Vandamme P; Bergel A
    Bioelectrochemistry; 2010 Apr; 78(1):51-6. PubMed ID: 19643681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells.
    Liu Y; Harnisch F; Fricke K; Schröder U; Climent V; Feliu JM
    Biosens Bioelectron; 2010 May; 25(9):2167-71. PubMed ID: 20189793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling natural biofilms: a new route to build efficient microbial anodes.
    Erable B; Roncato MA; Achouak W; Bergel A
    Environ Sci Technol; 2009 May; 43(9):3194-9. PubMed ID: 19534134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell.
    Yoon SM; Choi CH; Kim M; Hyun MS; Shin SH; Yi DH; Kim HJ
    J Microbiol Biotechnol; 2007 Jan; 17(1):110-5. PubMed ID: 18051361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harvesting electricity with Geobacter bremensis isolated from compost.
    Nercessian O; Parot S; Délia ML; Bergel A; Achouak W
    PLoS One; 2012; 7(3):e34216. PubMed ID: 22470538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms.
    Salvin P; Roos C; Robert F
    Bioresour Technol; 2012 Sep; 120():45-51. PubMed ID: 22784952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat.
    Cheng KY; Cord-Ruwisch R; Ho G
    Bioelectrochemistry; 2009 Feb; 74(2):227-31. PubMed ID: 19019740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis.
    Carballo T; Gil MV; Gómez X; González-Andrés F; Morán A
    Biodegradation; 2008 Nov; 19(6):815-30. PubMed ID: 18347917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552).
    Busalmen JP; de Sánchez SR
    Appl Environ Microbiol; 2005 Oct; 71(10):6235-40. PubMed ID: 16204543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria.
    Torres CI; Kato Marcus A; Rittmann BE
    Biotechnol Bioeng; 2008 Aug; 100(5):872-81. PubMed ID: 18551519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From fundamentals to microbial power plants: electrochemically active biofilms.
    Bergel A; Feron D; Flemming HC
    Bioelectrochemistry; 2010 Apr; 78(1):1. PubMed ID: 19926537
    [No Abstract]   [Full Text] [Related]  

  • 15. Bacterial translational motion on the electrode surface under anodic electric field.
    Kang H; Shim S; Lee SJ; Yoon J; Ahn KH
    Environ Sci Technol; 2011 Jul; 45(13):5769-74. PubMed ID: 21650178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the development of a microbial electrolysis cell bioanode using an electrochemical quartz crystal microbalance.
    Kleijn JM; Lhuillier Q; Jeremiasse AW
    Bioelectrochemistry; 2010 Oct; 79(2):272-5. PubMed ID: 20494628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry.
    Dheilly A; Linossier I; Darchen A; Hadjiev D; Corbel C; Alonso V
    Appl Microbiol Biotechnol; 2008 May; 79(1):157-64. PubMed ID: 18330564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells.
    Yi H; Nevin KP; Kim BC; Franks AE; Klimes A; Tender LM; Lovley DR
    Biosens Bioelectron; 2009 Aug; 24(12):3498-503. PubMed ID: 19487117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required.
    Pocaznoi D; Erable B; Etcheverry L; Delia ML; Bergel A
    Bioresour Technol; 2012 Jun; 114():334-41. PubMed ID: 22483348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitated protamine transfer at polarized water/1,2-dichloroethane interfaces studied by cyclic voltammetry and chronoamperometry at micropipet electrodes.
    Yuan Y; Amemiya S
    Anal Chem; 2004 Dec; 76(23):6877-86. PubMed ID: 15571336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.