BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17988956)

  • 1. Expression and functional analysis of a novel Fusion Competent Myoblast specific GAL4 driver.
    Beckett K; Rochlin KM; Duan H; Nguyen HT; Baylies MK
    Gene Expr Patterns; 2008 Jan; 8(2):87-91. PubMed ID: 17988956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoblast fusion in Drosophila.
    Haralalka S; Abmayr SM
    Exp Cell Res; 2010 Nov; 316(18):3007-13. PubMed ID: 20580706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D analysis of founder cell and fusion competent myoblast arrangements outlines a new model of myoblast fusion.
    Beckett K; Baylies MK
    Dev Biol; 2007 Sep; 309(1):113-25. PubMed ID: 17662708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. myoblasts incompetent encodes a zinc finger transcription factor required to specify fusion-competent myoblasts in Drosophila.
    Ruiz-Gómez M; Coutts N; Suster ML; Landgraf M; Bate M
    Development; 2002 Jan; 129(1):133-41. PubMed ID: 11782407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion.
    Brunetti TM; Fremin BJ; Cripps RM
    Dev Biol; 2015 May; 401(2):299-309. PubMed ID: 25797154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mind bomb 2, a founder myoblast-specific protein, regulates myoblast fusion and muscle stability.
    Carrasco-Rando M; Ruiz-Gómez M
    Development; 2008 Mar; 135(5):849-57. PubMed ID: 18216171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre.
    Guruharsha KG; Ruiz-Gomez M; Ranganath HA; Siddharthan R; Vijayraghavan K
    PLoS One; 2009 Sep; 4(9):e6960. PubMed ID: 19742310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis.
    Ciglar L; Girardot C; Wilczyński B; Braun M; Furlong EE
    Development; 2014 Jul; 141(13):2633-43. PubMed ID: 24961800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the cell adhesion molecule sticks-and-stones reveals multiple redundant functional domains, protein-interaction motifs and phosphorylated tyrosines that direct myoblast fusion in Drosophila melanogaster.
    Kocherlakota KS; Wu JM; McDermott J; Abmayr SM
    Genetics; 2008 Mar; 178(3):1371-83. PubMed ID: 18245830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila.
    Chen EH; Olson EN
    Dev Cell; 2001 Nov; 1(5):705-15. PubMed ID: 11709190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling.
    Artero RD; Castanon I; Baylies MK
    Development; 2001 Nov; 128(21):4251-64. PubMed ID: 11684661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development.
    Duan H; Skeath JB; Nguyen HT
    Development; 2001 Nov; 128(22):4489-500. PubMed ID: 11714674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila Swiprosin-1/EFHD2 accumulates at the prefusion complex stage during Drosophila myoblast fusion.
    Hornbruch-Freitag C; Griemert B; Buttgereit D; Renkawitz-Pohl R
    J Cell Sci; 2011 Oct; 124(Pt 19):3266-78. PubMed ID: 21896648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts.
    Shelton C; Kocherlakota KS; Zhuang S; Abmayr SM
    Development; 2009 Apr; 136(7):1159-68. PubMed ID: 19270174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blown fuse regulates stretching and outgrowth but not myoblast fusion of the circular visceral muscles in Drosophila.
    Schröter RH; Buttgereit D; Beck L; Holz A; Renkawitz-Pohl R
    Differentiation; 2006 Dec; 74(9-10):608-21. PubMed ID: 17177857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Notch and Ras signaling pathway effector genes expressed in fusion competent and founder cells during Drosophila myogenesis.
    Artero R; Furlong EE; Beckett K; Scott MP; Baylies M
    Development; 2003 Dec; 130(25):6257-72. PubMed ID: 14602676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster are expressed in tissues other than eyes also.
    Ray M; Lakhotia SC
    J Genet; 2015 Sep; 94(3):407-16. PubMed ID: 26440079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genomic approach to myoblast fusion in Drosophila.
    Estrada B; Michelson AM
    Methods Mol Biol; 2008; 475():299-314. PubMed ID: 18979251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS).
    Kesper DA; Stute C; Buttgereit D; Kreisköther N; Vishnu S; Fischbach KF; Renkawitz-Pohl R
    Dev Dyn; 2007 Feb; 236(2):404-15. PubMed ID: 17146786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6.
    Chen EH; Pryce BA; Tzeng JA; Gonzalez GA; Olson EN
    Cell; 2003 Sep; 114(6):751-62. PubMed ID: 14505574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.