BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17989931)

  • 1. Calculating physical properties of organic compounds for environmental modeling from molecular structure.
    Hilal SH; Saravanaraj AN; Whiteside T; Carreira LA
    J Comput Aided Mol Des; 2007 Dec; 21(12):693-708. PubMed ID: 17989931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Property Estimation of Per- and Polyfluoroalkyl Substances: A Comparative Assessment of Estimation Methods.
    Lampic A; Parnis JM
    Environ Toxicol Chem; 2020 Apr; 39(4):775-786. PubMed ID: 32022323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models.
    Chi Y; Zhang H; Huang Q; Lin Y; Ye G; Zhu H; Dong S
    J Environ Sci (China); 2018 Feb; 64():23-31. PubMed ID: 29478644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning.
    Zang Q; Mansouri K; Williams AJ; Judson RS; Allen DG; Casey WM; Kleinstreuer NC
    J Chem Inf Model; 2017 Jan; 57(1):36-49. PubMed ID: 28006899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds.
    Chen D; Wang Q; Li Y; Li Y; Zhou H; Fan Y
    Chemosphere; 2020 May; 247():125869. PubMed ID: 31972487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs): potential persistent organic pollutants (POPs).
    Huang J; Yu G; Yang X; Zhang ZL
    J Environ Sci (China); 2004; 16(2):204-7. PubMed ID: 15137639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.
    Whiteside TS; Hilal SH; Brenner A; Carreira LA
    SAR QSAR Environ Res; 2016 Aug; 27(8):677-701. PubMed ID: 27586365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative structure-property relationship (QSPR) for estimating solid material-air partition coefficients of organic compounds.
    Huang L; Jolliet O
    Indoor Air; 2019 Jan; 29(1):79-88. PubMed ID: 30295963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of logS(W), logK(OA), and logK(OW) with electron-correlation.
    Chayawan ; Vikas
    J Hazard Mater; 2015 Oct; 296():68-81. PubMed ID: 25913673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR prediction of physico-chemical properties for REACH.
    Dearden JC; Rotureau P; Fayet G
    SAR QSAR Environ Res; 2013; 24(4):279-318. PubMed ID: 23521394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of melting points of large set of persistent organic pollutants utilizing QSPR approach.
    Watkins M; Sizochenko N; Rasulev B; Leszczynski J
    J Mol Model; 2016 Mar; 22(3):55. PubMed ID: 26874948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPR studies on water solubility, octanol-water partition coefficient and vapour pressure of pesticides.
    Duchowicz PR
    SAR QSAR Environ Res; 2020 Feb; 31(2):135-148. PubMed ID: 31842624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding quantitative structure-property relationships uncertainty in environmental fate modeling.
    Sarfraz Iqbal M; Golsteijn L; Öberg T; Sahlin U; Papa E; Kovarich S; Huijbregts MA
    Environ Toxicol Chem; 2013 Apr; 32(5):1069-76. PubMed ID: 23436749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models.
    Pramanik S; Roy K
    Chemosphere; 2013 Jul; 92(5):600-7. PubMed ID: 23642702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictability of physicochemical properties of polychlorinated dibenzo-p-dioxins (PCDDs) based on single-molecular descriptor models.
    Kim M; Li LY; Grace JR
    Environ Pollut; 2016 Jun; 213():99-111. PubMed ID: 26878604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSPR models for the physicochemical properties of halogenated methyl-phenyl ethers.
    Xu HY; Zhang JY; Zou JW; Chen XS
    J Mol Graph Model; 2008 Apr; 26(7):1076-81. PubMed ID: 18060816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of adipose/blood partition coefficient for environmental chemicals.
    Papadaki KC; Karakitsios SP; Sarigiannis DA
    Food Chem Toxicol; 2017 Dec; 110():274-285. PubMed ID: 29111282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel quantitative structure activity relationship models for predicting hexadecane/air partition coefficients of organic compounds.
    Wang Y; Tang W; Xiao Z; Yang W; Peng Y; Chen J; Li J
    J Environ Sci (China); 2023 Feb; 124():98-104. PubMed ID: 36182199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of boiling points of organic compounds by QSPR tools.
    Dai YM; Zhu ZP; Cao Z; Zhang YF; Zeng JL; Li X
    J Mol Graph Model; 2013 Jul; 44():113-9. PubMed ID: 23792208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filling environmental data gaps with QSPR for ionic liquids: Modeling n-octanol/water coefficient.
    Rybinska A; Sosnowska A; Grzonkowska M; Barycki M; Puzyn T
    J Hazard Mater; 2016 Feb; 303():137-44. PubMed ID: 26530890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.