These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 17990884)
1. Site-specific insertion of 3-aminotyrosine into subunit alpha2 of E. coli ribonucleotide reductase: direct evidence for involvement of Y730 and Y731 in radical propagation. Seyedsayamdost MR; Xie J; Chan CT; Schultz PG; Stubbe J J Am Chem Soc; 2007 Dec; 129(48):15060-71. PubMed ID: 17990884 [TBL] [Abstract][Full Text] [Related]
2. PELDOR spectroscopy with DOPA-beta2 and NH2Y-alpha2s: distance measurements between residues involved in the radical propagation pathway of E. coli ribonucleotide reductase. Seyedsayamdost MR; Chan CT; Mugnaini V; Stubbe J; Bennati M J Am Chem Soc; 2007 Dec; 129(51):15748-9. PubMed ID: 18047343 [TBL] [Abstract][Full Text] [Related]
3. Site-specific replacement of Y356 with 3,4-dihydroxyphenylalanine in the beta2 subunit of E. coli ribonucleotide reductase. Seyedsayamdost MR; Stubbe J J Am Chem Soc; 2006 Mar; 128(8):2522-3. PubMed ID: 16492021 [TBL] [Abstract][Full Text] [Related]
4. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Minnihan EC; Nocera DG; Stubbe J Acc Chem Res; 2013 Nov; 46(11):2524-35. PubMed ID: 23730940 [TBL] [Abstract][Full Text] [Related]
5. Generation of the R2 subunit of ribonucleotide reductase by intein chemistry: insertion of 3-nitrotyrosine at residue 356 as a probe of the radical initiation process. Yee CS; Seyedsayamdost MR; Chang MC; Nocera DG; Stubbe J Biochemistry; 2003 Dec; 42(49):14541-52. PubMed ID: 14661967 [TBL] [Abstract][Full Text] [Related]
6. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. Greene BL; Taguchi AT; Stubbe J; Nocera DG J Am Chem Soc; 2017 Nov; 139(46):16657-16665. PubMed ID: 29037038 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen bond network between amino acid radical intermediates on the proton-coupled electron transfer pathway of E. coli α2 ribonucleotide reductase. Nick TU; Lee W; Kossmann S; Neese F; Stubbe J; Bennati M J Am Chem Soc; 2015 Jan; 137(1):289-98. PubMed ID: 25516424 [TBL] [Abstract][Full Text] [Related]
8. pH Rate profiles of FnY356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway. Seyedsayamdost MR; Yee CS; Reece SY; Nocera DG; Stubbe J J Am Chem Soc; 2006 Feb; 128(5):1562-8. PubMed ID: 16448127 [TBL] [Abstract][Full Text] [Related]
9. Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. Minnihan EC; Ando N; Brignole EJ; Olshansky L; Chittuluru J; Asturias FJ; Drennan CL; Nocera DG; Stubbe J Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3835-40. PubMed ID: 23431160 [TBL] [Abstract][Full Text] [Related]
10. Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in Escherichia coli Class Ia Ribonucleotide Reductase. Ravichandran K; Minnihan EC; Lin Q; Yokoyama K; Taguchi AT; Shao J; Nocera DG; Stubbe J Biochemistry; 2017 Feb; 56(6):856-868. PubMed ID: 28103007 [TBL] [Abstract][Full Text] [Related]
11. A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes. Ravichandran KR; Taguchi AT; Wei Y; Tommos C; Nocera DG; Stubbe J J Am Chem Soc; 2016 Oct; 138(41):13706-13716. PubMed ID: 28068088 [TBL] [Abstract][Full Text] [Related]
12. Pre-steady-state and steady-state kinetic analysis of E. coli class I ribonucleotide reductase. Ge J; Yu G; Ator MA; Stubbe J Biochemistry; 2003 Sep; 42(34):10071-83. PubMed ID: 12939135 [TBL] [Abstract][Full Text] [Related]
13. Reverse Electron Transfer Completes the Catalytic Cycle in a 2,3,5-Trifluorotyrosine-Substituted Ribonucleotide Reductase. Ravichandran KR; Minnihan EC; Wei Y; Nocera DG; Stubbe J J Am Chem Soc; 2015 Nov; 137(45):14387-95. PubMed ID: 26492582 [TBL] [Abstract][Full Text] [Related]
14. Replacement of Y730 and Y731 in the alpha2 subunit of Escherichia coli ribonucleotide reductase with 3-aminotyrosine using an evolved suppressor tRNA/tRNA-synthetase pair. Seyedsayamdost MR; Stubbe J Methods Enzymol; 2009; 462():45-76. PubMed ID: 19632469 [TBL] [Abstract][Full Text] [Related]
15. Equilibration of tyrosyl radicals (Y356•, Y731•, Y730•) in the radical propagation pathway of the Escherichia coli class Ia ribonucleotide reductase. Yokoyama K; Smith AA; Corzilius B; Griffin RG; Stubbe J J Am Chem Soc; 2011 Nov; 133(45):18420-32. PubMed ID: 21967342 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases. Minnihan EC; Seyedsayamdost MR; Uhlin U; Stubbe J J Am Chem Soc; 2011 Jun; 133(24):9430-40. PubMed ID: 21612216 [TBL] [Abstract][Full Text] [Related]
17. Photochemical Rescue of a Conformationally Inactivated Ribonucleotide Reductase. Greene BL; Stubbe J; Nocera DG J Am Chem Soc; 2018 Nov; 140(46):15744-15752. PubMed ID: 30347141 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of hydrogen atom abstraction from substrate by an active site thiyl radical in ribonucleotide reductase. Olshansky L; Pizano AA; Wei Y; Stubbe J; Nocera DG J Am Chem Soc; 2014 Nov; 136(46):16210-6. PubMed ID: 25353063 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic Evidence for a H Bond Network at Y Nick TU; Ravichandran KR; Stubbe J; Kasanmascheff M; Bennati M Biochemistry; 2017 Jul; 56(28):3647-3656. PubMed ID: 28640584 [TBL] [Abstract][Full Text] [Related]
20. Redox-dependent structural coupling between the α2 and β2 subunits in E. coli ribonucleotide reductase. Offenbacher AR; Watson RA; Pagba CV; Barry BA J Phys Chem B; 2014 Mar; 118(11):2993-3004. PubMed ID: 24606240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]