BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17990961)

  • 1. Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against botrytis cinerea.
    Schoonbeek HJ; Jacquat-Bovet AC; Mascher F; Métraux JP
    Mol Plant Microbe Interact; 2007 Dec; 20(12):1535-44. PubMed ID: 17990961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
    Marina M; Romero FM; Villarreal NM; Medina AJ; Gárriz A; Rossi FR; Martinez GA; Pieckenstain FL
    Plant Mol Biol; 2019 Aug; 100(6):659-674. PubMed ID: 31187392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000.
    Nguyen NH; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A
    J Exp Bot; 2022 Jun; 73(11):3743-3757. PubMed ID: 35191984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea.
    Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T
    Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
    López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB
    Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea.
    Sun G; Feng C; Zhang A; Zhang Y; Chang D; Wang Y; Ma Q
    World J Microbiol Biotechnol; 2019 Feb; 35(2):36. PubMed ID: 30712096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Botrytis cinerea mutants deficient in D-galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato.
    Zhang L; van Kan JA
    Mol Plant Pathol; 2013 Jan; 14(1):19-29. PubMed ID: 22937823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to
    Lionetti V; Fabri E; De Caroli M; Hansen AR; Willats WG; Piro G; Bellincampi D
    Plant Physiol; 2017 Mar; 173(3):1844-1863. PubMed ID: 28082716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling.
    Hu Z; Shao S; Zheng C; Sun Z; Shi J; Yu J; Qi Z; Shi K
    Planta; 2018 May; 247(5):1217-1227. PubMed ID: 29445868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum.
    Chen X; Liu J; Lin G; Wang A; Wang Z; Lu G
    Plant Cell Rep; 2013 Oct; 32(10):1589-99. PubMed ID: 23749099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea.
    Crespo-Salvador Ó; Escamilla-Aguilar M; López-Cruz J; López-Rodas G; González-Bosch C
    Plant Cell Rep; 2018 Jan; 37(1):153-166. PubMed ID: 29119291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.
    Kravchuk Z; Vicedo B; Flors V; Camañes G; González-Bosch C; García-Agustín P
    J Plant Physiol; 2011 Mar; 168(4):359-66. PubMed ID: 20950893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions.
    Finiti I; Leyva MO; López-Cruz J; Calderan Rodrigues B; Vicedo B; Angulo C; Bennett AB; Grant M; García-Agustín P; González-Bosch C
    Plant Biol (Stuttg); 2013 Sep; 15(5):819-31. PubMed ID: 23528138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gadolinium Protects
    Batista-Oliveira JS; Formey D; Torres M; Aragón W; Romero-Contreras YJ; Maruri-López I; Tromas A; Schwan-Estrada KRF; Serrano M
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34066536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-selenium foliar intervention-induced resistance of cucumber to Botrytis cinerea by activating jasmonic acid biosynthesis and regulating phenolic acid and cucurbitacin.
    Jia Y; Kang L; Wu Y; Zhou C; Cai R; Zhang H; Li J; Chen Z; Kang D; Zhang L; Pan C
    Pest Manag Sci; 2024 Feb; 80(2):554-568. PubMed ID: 37733166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
    La Camera S; L'haridon F; Astier J; Zander M; Abou-Mansour E; Page G; Thurow C; Wendehenne D; Gatz C; Métraux JP; Lamotte O
    Plant J; 2011 Nov; 68(3):507-19. PubMed ID: 21756272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased phenylalanine levels in plant leaves reduces susceptibility to Botrytis cinerea.
    Oliva M; Hatan E; Kumar V; Galsurker O; Nisim-Levi A; Ovadia R; Galili G; Lewinsohn E; Elad Y; Alkan N; Oren-Shamir M
    Plant Sci; 2020 Jan; 290():110289. PubMed ID: 31779900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The polyphagous plant pathogenic fungus Botrytis cinerea encompasses host-specialized and generalist populations.
    Mercier A; Carpentier F; Duplaix C; Auger A; Pradier JM; Viaud M; Gladieux P; Walker AS
    Environ Microbiol; 2019 Dec; 21(12):4808-4821. PubMed ID: 31608584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced resistance to fungal and bacterial diseases in tomato and Arabidopsis expressing BSR2 from rice.
    Maeda S; Yokotani N; Oda K; Mori M
    Plant Cell Rep; 2020 Nov; 39(11):1493-1503. PubMed ID: 32772129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y
    BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.