These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17990961)

  • 21. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea.
    Wang L; Liu W; Wang Y
    Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity.
    Kunz C; Vandelle E; Rolland S; Poinssot B; Bruel C; Cimerman A; Zotti C; Moreau E; Vedel R; Pugin A; Boccara M
    New Phytol; 2006; 170(3):537-50. PubMed ID: 16626475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors.
    Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M
    Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea.
    Ferrari S; Galletti R; Vairo D; Cervone F; De Lorenzo G
    Mol Plant Microbe Interact; 2006 Aug; 19(8):931-6. PubMed ID: 16903359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea.
    Cabot C; Gallego B; Martos S; Barceló J; Poschenrieder C
    Planta; 2013 Jan; 237(1):337-49. PubMed ID: 23070523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks.
    Savchenko T; Walley JW; Chehab EW; Xiao Y; Kaspi R; Pye MF; Mohamed ME; Lazarus CM; Bostock RM; Dehesh K
    Plant Cell; 2010 Oct; 22(10):3193-205. PubMed ID: 20935246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea.
    Scalschi L; Sanmartín M; Camañes G; Troncho P; Sánchez-Serrano JJ; García-Agustín P; Vicedo B
    Plant J; 2015 Jan; 81(2):304-15. PubMed ID: 25407262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan primes plant defence mechanisms against Botrytis cinerea, including expression of Avr9/Cf-9 rapidly elicited genes.
    De Vega D; Holden N; Hedley PE; Morris J; Luna E; Newton A
    Plant Cell Environ; 2021 Jan; 44(1):290-303. PubMed ID: 33094513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea.
    Govrin EM; Levine A
    Curr Biol; 2000 Jun; 10(13):751-7. PubMed ID: 10898976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T
    Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endophytic Bacteria from the Sahara Desert Protect Tomato Plants Against Botrytis cinerea Under Different Experimental Conditions.
    Oukala N; Pastor-Fernández J; Sanmartín N; Aissat K; Pastor V
    Curr Microbiol; 2021 Jun; 78(6):2367-2379. PubMed ID: 33835232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.
    Wang C; Ding Y; Yao J; Zhang Y; Sun Y; Colee J; Mou Z
    Plant J; 2015 Sep; 83(6):1019-33. PubMed ID: 26216741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CsWRKY10 mediates defence responses to Botrytis cinerea infection in Cucumis sativus.
    Liu M; Zhang Q; Wang C; Meng T; Wang L; Chen C; Ren Z
    Plant Sci; 2020 Nov; 300():110640. PubMed ID: 33180717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grey mould control by oxalate degradation using non-antifungal Pseudomonas abietaniphila strain ODB36.
    Lee Y; Choi O; Kang B; Bae J; Kim S; Kim J
    Sci Rep; 2020 Jan; 10(1):1605. PubMed ID: 32005892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.
    Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y
    Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana.
    Hael-Conrad V; Abou-Mansour E; Díaz-Ricci JC; Métraux JP; Serrano M
    Plant Sci; 2015 Dec; 241():120-7. PubMed ID: 26706064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection.
    Wang M; Weiberg A; Lin FM; Thomma BP; Huang HD; Jin H
    Nat Plants; 2016 Sep; 2():16151. PubMed ID: 27643635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In the tripartite combination Botrytis cinerea-Arabidopsis-Eurydema oleracea, the fungal pathogen alters the plant-insect interaction via jasmonic acid signalling activation and inducible plant-emitted volatiles.
    Ederli L; Salerno G; Quaglia M
    J Plant Res; 2021 May; 134(3):523-533. PubMed ID: 33738682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.