These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 17991033)
1. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Jones J; Studholme DJ; Knight CG; Preston GM Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033 [TBL] [Abstract][Full Text] [Related]
2. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Péchy-Tarr M; Bottiglieri M; Mathys S; Lejbølle KB; Schnider-Keel U; Maurhofer M; Keel C Mol Plant Microbe Interact; 2005 Mar; 18(3):260-72. PubMed ID: 15782640 [TBL] [Abstract][Full Text] [Related]
3. CbrAB-dependent regulation of pcnB, a poly(A) polymerase gene involved in polyadenylation of RNA in Pseudomonas fluorescens. Zhang XX; Liu YH; Rainey PB Environ Microbiol; 2010 Jun; 12(6):1674-83. PubMed ID: 20482591 [TBL] [Abstract][Full Text] [Related]
4. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565 [TBL] [Abstract][Full Text] [Related]
5. Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli. Dong T; Yu R; Schellhorn H Mol Microbiol; 2011 Jan; 79(2):375-86. PubMed ID: 21219458 [TBL] [Abstract][Full Text] [Related]
6. The dctA gene of Pseudomonas chlororaphis O6 is under RpoN control and is required for effective root colonization and induction of systemic resistance. Nam HS; Anderson AJ; Yang KY; Cho BH; Kim YC FEMS Microbiol Lett; 2006 Mar; 256(1):98-104. PubMed ID: 16487325 [TBL] [Abstract][Full Text] [Related]
7. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Zhang XX; Rainey PB Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611 [TBL] [Abstract][Full Text] [Related]
8. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25. Vinatzer BA; Jelenska J; Greenberg JT Mol Plant Microbe Interact; 2005 Aug; 18(8):877-88. PubMed ID: 16134900 [TBL] [Abstract][Full Text] [Related]
9. Role of sigma54 in the regulation of genes involved in type I and type IV pili biogenesis in Xylella fastidiosa. da Silva Neto JF; Koide T; Abe CM; Gomes SL; Marques MV Arch Microbiol; 2008 Mar; 189(3):249-61. PubMed ID: 17985115 [TBL] [Abstract][Full Text] [Related]
10. The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings. Zhang XX; George A; Bailey MJ; Rainey PB Microbiology (Reading); 2006 Jun; 152(Pt 6):1867-1875. PubMed ID: 16735749 [TBL] [Abstract][Full Text] [Related]
11. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro. Jackson RW; Preston GM; Rainey PB J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952 [TBL] [Abstract][Full Text] [Related]
12. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. de Bruijn I; de Kock MJ; Yang M; de Waard P; van Beek TA; Raaijmakers JM Mol Microbiol; 2007 Jan; 63(2):417-28. PubMed ID: 17241198 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113. Barret M; Egan F; Moynihan J; Morrissey JP; Lesouhaitier O; O'Gara F Environ Microbiol Rep; 2013 Jun; 5(3):377-86. PubMed ID: 23754718 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Brucella abortus sigma factor sigma54 (rpoN): genetic complementation of Sinorhizobium meliloti ntrA mutant. Iannino F; Ugalde RA; Iñón de Iannino N Microb Pathog; 2008; 45(5-6):394-402. PubMed ID: 18926896 [TBL] [Abstract][Full Text] [Related]
15. A conserved mechanism for nitrile metabolism in bacteria and plants. Howden AJ; Harrison CJ; Preston GM Plant J; 2009 Jan; 57(2):243-53. PubMed ID: 18786181 [TBL] [Abstract][Full Text] [Related]
16. Pleiotropic control of antibiotic biosynthesis, flagellar operon expression, biofilm formation, and carbon source utilization by RpoN in Pseudomonas protegens H78. Liu Y; Shi H; Wang Z; Huang X; Zhang X Appl Microbiol Biotechnol; 2018 Nov; 102(22):9719-9730. PubMed ID: 30128583 [TBL] [Abstract][Full Text] [Related]
17. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826 [TBL] [Abstract][Full Text] [Related]
18. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25. Zhang XX; Rainey PB Genetics; 2007 Aug; 176(4):2165-76. PubMed ID: 17717196 [TBL] [Abstract][Full Text] [Related]
19. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Preston GM; Bertrand N; Rainey PB Mol Microbiol; 2001 Sep; 41(5):999-1014. PubMed ID: 11555282 [TBL] [Abstract][Full Text] [Related]
20. The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Alsohim AS; Taylor TB; Barrett GA; Gallie J; Zhang XX; Altamirano-Junqueira AE; Johnson LJ; Rainey PB; Jackson RW Environ Microbiol; 2014 Jul; 16(7):2267-81. PubMed ID: 24684210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]