These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1268 related articles for article (PubMed ID: 17991697)
1. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Burgomaster KA; Howarth KR; Phillips SM; Rakobowchuk M; Macdonald MJ; McGee SL; Gibala MJ J Physiol; 2008 Jan; 586(1):151-60. PubMed ID: 17991697 [TBL] [Abstract][Full Text] [Related]
2. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. Gibala MJ; Little JP; van Essen M; Wilkin GP; Burgomaster KA; Safdar A; Raha S; Tarnopolsky MA J Physiol; 2006 Sep; 575(Pt 3):901-11. PubMed ID: 16825308 [TBL] [Abstract][Full Text] [Related]
3. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. Little JP; Safdar A; Wilkin GP; Tarnopolsky MA; Gibala MJ J Physiol; 2010 Mar; 588(Pt 6):1011-22. PubMed ID: 20100740 [TBL] [Abstract][Full Text] [Related]
4. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Hood MS; Little JP; Tarnopolsky MA; Myslik F; Gibala MJ Med Sci Sports Exerc; 2011 Oct; 43(10):1849-56. PubMed ID: 21448086 [TBL] [Abstract][Full Text] [Related]
5. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Burgomaster KA; Heigenhauser GJ; Gibala MJ J Appl Physiol (1985); 2006 Jun; 100(6):2041-7. PubMed ID: 16469933 [TBL] [Abstract][Full Text] [Related]
6. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Burgomaster KA; Hughes SC; Heigenhauser GJ; Bradwell SN; Gibala MJ J Appl Physiol (1985); 2005 Jun; 98(6):1985-90. PubMed ID: 15705728 [TBL] [Abstract][Full Text] [Related]
7. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598 [TBL] [Abstract][Full Text] [Related]
8. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325 [TBL] [Abstract][Full Text] [Related]
9. Fasted Sprint Interval Training Results in Some Beneficial Skeletal Muscle Metabolic, but Similar Metabolomic and Performance Adaptations Compared With Carbohydrate-Fed Training in Recreationally Active Male. Aird TP; Farquharson AJ; Bermingham KM; O'Sullivan A; Drew JE; Carson BP Int J Sport Nutr Exerc Metab; 2023 Mar; 33(2):73-83. PubMed ID: 36572038 [TBL] [Abstract][Full Text] [Related]
10. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Gibala MJ; McGee SL Exerc Sport Sci Rev; 2008 Apr; 36(2):58-63. PubMed ID: 18362686 [TBL] [Abstract][Full Text] [Related]
11. Effects of intermittent hyperbaric exposure on endurance and interval exercise performance in well-trained mice. Suzuki J Exp Physiol; 2019 Jan; 104(1):112-125. PubMed ID: 30457682 [TBL] [Abstract][Full Text] [Related]
12. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Perry CG; Heigenhauser GJ; Bonen A; Spriet LL Appl Physiol Nutr Metab; 2008 Dec; 33(6):1112-23. PubMed ID: 19088769 [TBL] [Abstract][Full Text] [Related]
13. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation. Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768 [TBL] [Abstract][Full Text] [Related]
14. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. Gillen JB; Martin BJ; MacInnis MJ; Skelly LE; Tarnopolsky MA; Gibala MJ PLoS One; 2016; 11(4):e0154075. PubMed ID: 27115137 [TBL] [Abstract][Full Text] [Related]
15. Divergent serum metabolomic, skeletal muscle signaling, transcriptomic, and performance adaptations to fasted versus whey protein-fed sprint interval training. Aird TP; Farquharson AJ; Bermingham KM; O'Sulllivan A; Drew JE; Carson BP Am J Physiol Endocrinol Metab; 2021 Dec; 321(6):E802-E820. PubMed ID: 34747202 [TBL] [Abstract][Full Text] [Related]
16. Effect of sex on the acute skeletal muscle response to sprint interval exercise. Skelly LE; Gillen JB; MacInnis MJ; Martin BJ; Safdar A; Akhtar M; MacDonald MJ; Tarnopolsky MA; Gibala MJ Exp Physiol; 2017 Mar; 102(3):354-365. PubMed ID: 28118678 [TBL] [Abstract][Full Text] [Related]
17. New records in aerobic power among octogenarian lifelong endurance athletes. Trappe S; Hayes E; Galpin A; Kaminsky L; Jemiolo B; Fink W; Trappe T; Jansson A; Gustafsson T; Tesch P J Appl Physiol (1985); 2013 Jan; 114(1):3-10. PubMed ID: 23065759 [TBL] [Abstract][Full Text] [Related]
18. β-Alanine Supplementation Does Not Augment the Skeletal Muscle Adaptive Response to 6 Weeks of Sprint Interval Training. Cochran AJ; Percival ME; Thompson S; Gillen JB; MacInnis MJ; Potter MA; Tarnopolsky MA; Gibala MJ Int J Sport Nutr Exerc Metab; 2015 Dec; 25(6):541-9. PubMed ID: 26008634 [TBL] [Abstract][Full Text] [Related]
19. No Superior Adaptations to Carbohydrate Periodization in Elite Endurance Athletes. Gejl KD; Thams LB; Hansen M; Rokkedal-Lausch T; Plomgaard P; Nybo L; Larsen FJ; Cardinale DA; Jensen K; Holmberg HC; Vissing K; Ørtenblad N Med Sci Sports Exerc; 2017 Dec; 49(12):2486-2497. PubMed ID: 28723843 [TBL] [Abstract][Full Text] [Related]
20. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]