These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 17991718)
1. Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Sataranatarajan K; Mariappan MM; Lee MJ; Feliers D; Choudhury GG; Barnes JL; Kasinath BS Am J Pathol; 2007 Dec; 171(6):1733-42. PubMed ID: 17991718 [TBL] [Abstract][Full Text] [Related]
2. Glycogen synthase kinase 3beta is a novel regulator of high glucose- and high insulin-induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells. Mariappan MM; Shetty M; Sataranatarajan K; Choudhury GG; Kasinath BS J Biol Chem; 2008 Nov; 283(45):30566-75. PubMed ID: 18701453 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. Lee HJ; Mariappan MM; Feliers D; Cavaglieri RC; Sataranatarajan K; Abboud HE; Choudhury GG; Kasinath BS J Biol Chem; 2012 Feb; 287(7):4451-61. PubMed ID: 22158625 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of translation elongation in neurons by brain-derived neurotrophic factor: implications for mammalian target of rapamycin signaling. Inamura N; Nawa H; Takei N J Neurochem; 2005 Dec; 95(5):1438-45. PubMed ID: 16171514 [TBL] [Abstract][Full Text] [Related]
5. High glucose, high insulin, and their combination rapidly induce laminin-beta1 synthesis by regulation of mRNA translation in renal epithelial cells. Mariappan MM; Feliers D; Mummidi S; Choudhury GG; Kasinath BS Diabetes; 2007 Feb; 56(2):476-85. PubMed ID: 17259394 [TBL] [Abstract][Full Text] [Related]
6. HIV-1 promotes renal tubular epithelial cell protein synthesis: role of mTOR pathway. Rehman S; Husain M; Yadav A; Kasinath BS; Malhotra A; Singhal PC PLoS One; 2012; 7(1):e30071. PubMed ID: 22253885 [TBL] [Abstract][Full Text] [Related]
7. Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps. Wang L; Wang X; Proud CG Am J Physiol Heart Circ Physiol; 2000 Apr; 278(4):H1056-68. PubMed ID: 10749698 [TBL] [Abstract][Full Text] [Related]
8. Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells. Mariappan MM; D'Silva K; Lee MJ; Sataranatarajan K; Barnes JL; Choudhury GG; Kasinath BS Am J Physiol Renal Physiol; 2011 Jan; 300(1):F219-30. PubMed ID: 20943765 [TBL] [Abstract][Full Text] [Related]
9. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Browne GJ; Proud CG Mol Cell Biol; 2004 Apr; 24(7):2986-97. PubMed ID: 15024086 [TBL] [Abstract][Full Text] [Related]
11. Initiation and elongation steps of mRNA translation are involved in the increase in milk protein yield caused by growth hormone administration during lactation. Hayashi AA; Nones K; Roy NC; McNabb WC; Mackenzie DS; Pacheco D; McCoard S J Dairy Sci; 2009 May; 92(5):1889-99. PubMed ID: 19389947 [TBL] [Abstract][Full Text] [Related]
12. Renal activity of Akt kinase in experimental Type 1 diabetes. Ždychová J; Veselá J; Kazdová L; Komers R Physiol Res; 2008; 57(5):709-716. PubMed ID: 17949249 [TBL] [Abstract][Full Text] [Related]
13. Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Nagai K; Matsubara T; Mima A; Sumi E; Kanamori H; Iehara N; Fukatsu A; Yanagita M; Nakano T; Ishimoto Y; Kita T; Doi T; Arai H Kidney Int; 2005 Aug; 68(2):552-61. PubMed ID: 16014032 [TBL] [Abstract][Full Text] [Related]
14. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. Chan AY; Soltys CL; Young ME; Proud CG; Dyck JR J Biol Chem; 2004 Jul; 279(31):32771-9. PubMed ID: 15159410 [TBL] [Abstract][Full Text] [Related]
15. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Lee MJ; Feliers D; Mariappan MM; Sataranatarajan K; Mahimainathan L; Musi N; Foretz M; Viollet B; Weinberg JM; Choudhury GG; Kasinath BS Am J Physiol Renal Physiol; 2007 Feb; 292(2):F617-27. PubMed ID: 17018841 [TBL] [Abstract][Full Text] [Related]
16. Vascular endothelial growth factor induces protein synthesis in renal epithelial cells: a potential role in diabetic nephropathy. Senthil D; Choudhury GG; McLaurin C; Kasinath BS Kidney Int; 2003 Aug; 64(2):468-79. PubMed ID: 12846742 [TBL] [Abstract][Full Text] [Related]
17. Interplay between insulin and nutrients in the regulation of translation factors. Proud CG; Wang X; Patel JV; Campbell LE; Kleijn M; Li W; Browne GJ Biochem Soc Trans; 2001 Aug; 29(Pt 4):541-7. PubMed ID: 11498025 [TBL] [Abstract][Full Text] [Related]
18. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Yang Y; Wang J; Qin L; Shou Z; Zhao J; Wang H; Chen Y; Chen J Am J Nephrol; 2007; 27(5):495-502. PubMed ID: 17671379 [TBL] [Abstract][Full Text] [Related]
19. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Kaul G; Pattan G; Rafeequi T Cell Biochem Funct; 2011 Apr; 29(3):227-34. PubMed ID: 21394738 [TBL] [Abstract][Full Text] [Related]
20. Direct and indirect activation of eukaryotic elongation factor 2 kinase by AMP-activated protein kinase. Johanns M; Pyr Dit Ruys S; Houddane A; Vertommen D; Herinckx G; Hue L; Proud CG; Rider MH Cell Signal; 2017 Aug; 36():212-221. PubMed ID: 28502587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]