These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 17991755)
1. Association of cholesteryl ester transfer protein with HDL particles reduces its proteolytic inactivation by mast cell chymase. Lee-Rueckert M; Vikstedt R; Metso J; Jauhiainen M; Kovanen PT J Lipid Res; 2008 Feb; 49(2):358-68. PubMed ID: 17991755 [TBL] [Abstract][Full Text] [Related]
3. Degradation of phospholipid transfer protein (PLTP) and PLTP-generated pre-beta-high density lipoprotein by mast cell chymase impairs high affinity efflux of cholesterol from macrophage foam cells. Lee M; Metso J; Jauhiainen M; Kovanen PT J Biol Chem; 2003 Apr; 278(15):13539-45. PubMed ID: 12531890 [TBL] [Abstract][Full Text] [Related]
4. Apolipoprotein composition and particle size affect HDL degradation by chymase: effect on cellular cholesterol efflux. Lee M; Kovanen PT; Tedeschi G; Oungre E; Franceschini G; Calabresi L J Lipid Res; 2003 Mar; 44(3):539-46. PubMed ID: 12562834 [TBL] [Abstract][Full Text] [Related]
5. Molecular determinants of plasma cholesteryl ester transfer protein binding to high density lipoproteins. Bruce C; Davidson WS; Kussie P; Lund-Katz S; Phillips MC; Ghosh R; Tall AR J Biol Chem; 1995 May; 270(19):11532-42. PubMed ID: 7744792 [TBL] [Abstract][Full Text] [Related]
6. Mast cell chymase degrades apoE and apoA-II in apoA-I-knockout mouse plasma and reduces its ability to promote cellular cholesterol efflux. Lee M; Calabresi L; Chiesa G; Franceschini G; Kovanen PT Arterioscler Thromb Vasc Biol; 2002 Sep; 22(9):1475-81. PubMed ID: 12231569 [TBL] [Abstract][Full Text] [Related]
7. Depletion of pre beta 1LpA1 and LpA4 particles by mast cell chymase reduces cholesterol efflux from macrophage foam cells induced by plasma. Lee M; von Eckardstein A; Lindstedt L; Assmann G; Kovanen PT Arterioscler Thromb Vasc Biol; 1999 Apr; 19(4):1066-74. PubMed ID: 10195937 [TBL] [Abstract][Full Text] [Related]
8. Transfer of cholesteryl ester into high density lipoprotein by cholesteryl ester transfer protein: effect of HDL lipid and apoprotein content. Sparks DL; Pritchard PH J Lipid Res; 1989 Oct; 30(10):1491-8. PubMed ID: 2614253 [TBL] [Abstract][Full Text] [Related]
9. Identification of domains in apoA-I susceptible to proteolysis by mast cell chymase. Implications for HDL function. Lee M; Uboldi P; Giudice D; Catapano AL; Kovanen PT J Lipid Res; 2000 Jun; 41(6):975-84. PubMed ID: 10828090 [TBL] [Abstract][Full Text] [Related]
10. Cholesteryl ester transfer protein: An enigmatic pharmacology - Antagonists and agonists. Yamashita S; Ruscica M; Macchi C; Corsini A; Matsuzawa Y; Sirtori CR Atherosclerosis; 2018 Nov; 278():286-298. PubMed ID: 30347344 [TBL] [Abstract][Full Text] [Related]
11. Evidence for a role of CETP in HDL remodeling and cholesterol efflux: role of cysteine 13 of CETP. Maugeais C; Perez A; von der Mark E; Magg C; Pflieger P; Niesor EJ Biochim Biophys Acta; 2013 Nov; 1831(11):1644-50. PubMed ID: 23872476 [TBL] [Abstract][Full Text] [Related]
12. Scavenger receptor type BI potentiates reverse cholesterol transport system by removing cholesterol ester from HDL. Kinoshita M; Fujita M; Usui S; Maeda Y; Kudo M; Hirota D; Suda T; Taki M; Okazaki M; Teramoto T Atherosclerosis; 2004 Apr; 173(2):197-202. PubMed ID: 15064092 [TBL] [Abstract][Full Text] [Related]
13. Human plasma cholesteryl ester transfer protein enhances the transfer of cholesteryl ester from high density lipoproteins into cultured HepG2 cells. Granot E; Tabas I; Tall AR J Biol Chem; 1987 Mar; 262(8):3482-7. PubMed ID: 3029115 [TBL] [Abstract][Full Text] [Related]
14. HDL and Cholesterol Ester Transfer Protein (CETP). Deng S; Liu J; Niu C Adv Exp Med Biol; 2022; 1377():13-26. PubMed ID: 35575918 [TBL] [Abstract][Full Text] [Related]
15. Cholesteryl ester transfer protein (CETP) expression enhances HDL cholesteryl ester liver delivery, which is independent of scavenger receptor BI, LDL receptor related protein and possibly LDL receptor. Zhou H; Li Z; Silver DL; Jiang XC Biochim Biophys Acta; 2006 Dec; 1761(12):1482-8. PubMed ID: 17055779 [TBL] [Abstract][Full Text] [Related]
16. Cholesteryl ester transfer between lipoproteins does not require a ternary tunnel complex with CETP. Lauer ME; Graff-Meyer A; Rufer AC; Maugeais C; von der Mark E; Matile H; D'Arcy B; Magg C; Ringler P; Müller SA; Scherer S; Dernick G; Thoma R; Hennig M; Niesor EJ; Stahlberg H J Struct Biol; 2016 May; 194(2):191-8. PubMed ID: 26876146 [TBL] [Abstract][Full Text] [Related]
17. Differential interaction of the human cholesteryl ester transfer protein with plasma high density lipoproteins (HDLs) from humans, control mice, and transgenic mice to human HDL apolipoproteins. Lack of lipid transfer inhibitory activity in transgenic mice expressing human apoA-I. Masson D; Duverger N; Emmanuel F; Lagrost L J Biol Chem; 1997 Sep; 272(39):24287-93. PubMed ID: 9305883 [TBL] [Abstract][Full Text] [Related]
18. Regulation of reconstituted high density lipoprotein structure and remodeling by apolipoprotein E. Rye KA; Bright R; Psaltis M; Barter PJ J Lipid Res; 2006 May; 47(5):1025-36. PubMed ID: 16452453 [TBL] [Abstract][Full Text] [Related]
19. Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. Rye KA; Hime NJ; Barter PJ J Biol Chem; 1997 Feb; 272(7):3953-60. PubMed ID: 9020099 [TBL] [Abstract][Full Text] [Related]
20. Effects of cholesteryl ester transfer protein inhibitors on human lipoprotein metabolism: why have they failed in lowering coronary heart disease risk? Schaefer EJ Curr Opin Lipidol; 2013 Jun; 24(3):259-64. PubMed ID: 23652567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]