These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17992)

  • 1. The pressure-flow relations of the canine brain in acute mechanically induced arterial hypertension at different levels of cerebral blood flow.
    Ekström-Jodal B; Häggendal E; Linder LE; Nilsson NJ
    Acta Anaesthesiol Scand; 1977; 21(3):232-9. PubMed ID: 17992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of arterial carbon dioxide tension on the cerebrovascular response to arterial hypoxia and to haemodilution.
    Häggendal E; Winsö I
    Acta Anaesthesiol Scand; 1975; 19(2):134-45. PubMed ID: 237396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon.
    Strandgaard S; Jones JV; MacKenzie ET; Harper AM
    Circ Res; 1975 Aug; 37(2):164-7. PubMed ID: 238755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous opioid mechanisms in hypothalamic blood flow autoregulation during haemorrhagic hypotension and angiotensin-induced acute hypertension in cats.
    Komjáti K; Velkei-Harvich M; Tóth J; Dallos G; Nyáry I; Sándor P
    Acta Physiol Scand; 1996 May; 157(1):53-61. PubMed ID: 8735654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K+ATP channels and adenosine are not necessary for coronary autoregulation.
    Stepp DW; Kroll K; Feigl EO
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1299-308. PubMed ID: 9321819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral blood flow autoregulation at high arterial pressures and different levels of carbon dioxide tension in dogs.
    Ekström-Jodal B; Häggendal E; Linder LE; Nilsson NJ
    Eur Neurol; 1971-1972; 6(1):6-10. PubMed ID: 5153457
    [No Abstract]   [Full Text] [Related]  

  • 7. Cortical blood flow autoregulation revisited using laser Doppler perfusion imaging.
    Kimme P; Ledin T; Sjöberg F
    Acta Physiol Scand; 2002 Dec; 176(4):255-62. PubMed ID: 12444930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous determination of the cerebrovascular changes induced by bicuculline and kainic acid in unanaesthetized spontaneously breathing rats.
    Pinard E; Rigaud AS; Riche D; Naquet R; Seylaz J
    Neuroscience; 1987 Dec; 23(3):943-52. PubMed ID: 3125492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of jugular venous pressure on cerebral autoregulation in dogs.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1516-24. PubMed ID: 3144187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral venous outflow and arterial microsphere flow with elevated venous pressure.
    Wagner EM; Traystman RJ
    Am J Physiol; 1983 Apr; 244(4):H505-12. PubMed ID: 6404180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the relation between blood pressure and blood flow in the canine brain with particular regard to the mechanism responsible for cerebral blood flow autoregulation.
    Ekström-Jodal B
    Acta Physiol Scand Suppl; 1970; 350():1-61. PubMed ID: 5280807
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of increased arterial pressure on blood flow in the damaged brain.
    Miller JD; Garibi J; North JB; Teasdale GM
    J Neurol Neurosurg Psychiatry; 1975 Jul; 38(7):657-65. PubMed ID: 1159437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability in the magnitude of the cerebral blood flow response and the shape of the cerebral blood flow-pressure autoregulation curve during hypotension in normal rats [corrected].
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Qu Y; Easley KA; Perez-Trepichio AD
    Anesthesiology; 2002 Aug; 97(2):488-96. PubMed ID: 12151941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early effects of E. coli endotoxin on superior sagittal sinus blood flow. An experimental study in dogs.
    Ekström-Jodal B; Elfverson J; Larsson LE
    Acta Anaesthesiol Scand; 1982 Jun; 26(3):171-4. PubMed ID: 6810644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon dioxide--a complex gas in a complex circulation: its effects on systemic hemodynamics and oxygen transport, cerebral, and splanchnic circulation in neonates after the Norwood procedure.
    Li J; Zhang G; Holtby H; Bissonnette B; Wang G; Redington AN; Van Arsdell GS
    J Thorac Cardiovasc Surg; 2008 Nov; 136(5):1207-14. PubMed ID: 19026805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of feeding on cerebral blood flow and oxygen consumption in the new-born calf.
    Gardiner RM
    J Physiol; 1980 Apr; 301():429-38. PubMed ID: 6774083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient analysis of the canine cerebrovascular response to carbon dioxide.
    Wilson DA; Traystman RJ; Rapela CE
    Circ Res; 1985 Apr; 56(4):596-605. PubMed ID: 3919964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of carbon dioxide upon myocardial contractile performance, blood flow and oxygen consumption.
    van den Bos GC; Drake AJ; Noble MI
    J Physiol; 1979 Feb; 287():149-61. PubMed ID: 430387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity of brain blood flow and permeability during acute hypertension.
    Baumbach GL; Heistad DD
    Am J Physiol; 1985 Sep; 249(3 Pt 2):H629-37. PubMed ID: 3929626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral circulatory and metabolic effects of hypotension produced by deep halothane anaesthesia.
    Keaney NP; Pickerodt VW; McDowall DG; Coroneos NJ; Turner JM; Shah ZP
    J Neurol Neurosurg Psychiatry; 1973 Dec; 36(6):898-905. PubMed ID: 4204060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.