These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17992563)

  • 1. Bimodal epidemic size distributions for near-critical SIR with vaccination.
    Gordillo LF; Marion SA; Martin-Löf A; Greenwood PE
    Bull Math Biol; 2008 Feb; 70(2):589-602. PubMed ID: 17992563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of a stochastic SIR epidemic on a random network incorporating household structure.
    Ball F; Sirl D; Trapman P
    Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic epidemic models: a survey.
    Britton T
    Math Biosci; 2010 May; 225(1):24-35. PubMed ID: 20102724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidemic curve characteristics for the Reed-Frost model.
    Enderle JD
    Biomed Sci Instrum; 1991; 27():67-75. PubMed ID: 2065179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Networks, epidemics and vaccination through contact tracing.
    Shaban N; Andersson M; Svensson A; Britton T
    Math Biosci; 2008 Nov; 216(1):1-8. PubMed ID: 18638493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.
    Tanner MW; Sattenspiel L; Ntaimo L
    Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global stability of an SIR epidemic model with information dependent vaccination.
    Buonomo B; D'Onofrio A; Lacitignola D
    Math Biosci; 2008 Nov; 216(1):9-16. PubMed ID: 18725233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidemic thresholds and vaccination in a lattice model of disease spread.
    Rhodes CJ; Anderson RM
    Theor Popul Biol; 1997 Oct; 52(2):101-18. PubMed ID: 9356327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic multitype epidemics in a community of households: estimation and form of optimal vaccination schemes.
    Ball F; Britton T; Lyne O
    Math Biosci; 2004 Sep; 191(1):19-40. PubMed ID: 15312742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of time distribution shape on a complex epidemic model.
    Camitz M; Svensson A
    Bull Math Biol; 2009 Nov; 71(8):1902-13. PubMed ID: 19475454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal intervention for an epidemic model under parameter uncertainty.
    Clancy D; Green N
    Math Biosci; 2007 Feb; 205(2):297-314. PubMed ID: 17070866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidemics with general generation interval distributions.
    Miller JC; Davoudi B; Meza R; Slim AC; Pourbohloul B
    J Theor Biol; 2010 Jan; 262(1):107-15. PubMed ID: 19679141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality.
    Kirupaharan N; Allen LJ
    Bull Math Biol; 2004 Jul; 66(4):841-64. PubMed ID: 15210322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some model based considerations on observing generation times for communicable diseases.
    Scalia Tomba G; Svensson A; Asikainen T; Giesecke J
    Math Biosci; 2010 Jan; 223(1):24-31. PubMed ID: 19854206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the number of recovered individuals in the SIS and SIR stochastic epidemic models.
    Artalejo JR; Economou A; Lopez-Herrero MJ
    Math Biosci; 2010 Nov; 228(1):45-55. PubMed ID: 20801133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
    Lekone PE; Finkenstädt BF
    Biometrics; 2006 Dec; 62(4):1170-7. PubMed ID: 17156292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidemic modelling: aspects where stochasticity matters.
    Britton T; Lindenstrand D
    Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-stage model for the SIR outbreak: accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage.
    Sazonov I; Kelbert M; Gravenor MB
    Math Biosci; 2011 Dec; 234(2):108-17. PubMed ID: 21968464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.