These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 17992580)
1. The transcriptional response of Escherichia coli to recombinant protein insolubility. Smith HE J Struct Funct Genomics; 2007 Mar; 8(1):27-35. PubMed ID: 17992580 [TBL] [Abstract][Full Text] [Related]
2. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Nonaka G; Blankschien M; Herman C; Gross CA; Rhodius VA Genes Dev; 2006 Jul; 20(13):1776-89. PubMed ID: 16818608 [TBL] [Abstract][Full Text] [Related]
3. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli. Hsu SY; Lin YS; Li SJ; Lee WC J Biosci Bioeng; 2014 Sep; 118(3):242-8. PubMed ID: 24656305 [TBL] [Abstract][Full Text] [Related]
4. An online monitoring system based on a synthetic sigma32-dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli. Kraft M; Knüpfer U; Wenderoth R; Pietschmann P; Hock B; Horn U Appl Microbiol Biotechnol; 2007 May; 75(2):397-406. PubMed ID: 17221192 [TBL] [Abstract][Full Text] [Related]
5. A chaperone network controls the heat shock response in E. coli. Guisbert E; Herman C; Lu CZ; Gross CA Genes Dev; 2004 Nov; 18(22):2812-21. PubMed ID: 15545634 [TBL] [Abstract][Full Text] [Related]
6. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
7. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. Horikoshi M; Yura T; Tsuchimoto S; Fukumori Y; Kanemori M J Bacteriol; 2004 Nov; 186(22):7474-80. PubMed ID: 15516558 [TBL] [Abstract][Full Text] [Related]
8. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869 [TBL] [Abstract][Full Text] [Related]
9. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. Kanemori M; Nishihara K; Yanagi H; Yura T J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683 [TBL] [Abstract][Full Text] [Related]
10. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518 [TBL] [Abstract][Full Text] [Related]
11. [Genetic regulation of the heat-shock response in Escherichia coli]. Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571 [TBL] [Abstract][Full Text] [Related]
12. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli. Bianchi AA; Baneyx F Mol Microbiol; 1999 Dec; 34(5):1029-38. PubMed ID: 10594827 [TBL] [Abstract][Full Text] [Related]
13. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823 [TBL] [Abstract][Full Text] [Related]
14. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J; Newton A J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189 [TBL] [Abstract][Full Text] [Related]
15. Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach. Obrist M; Narberhaus F J Bacteriol; 2005 Jun; 187(11):3807-13. PubMed ID: 15901705 [TBL] [Abstract][Full Text] [Related]
16. Dynamic transcriptional response of Escherichia coli to inclusion body formation. Baig F; Fernando LP; Salazar MA; Powell RR; Bruce TF; Harcum SW Biotechnol Bioeng; 2014 May; 111(5):980-99. PubMed ID: 24338599 [TBL] [Abstract][Full Text] [Related]
17. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins. Cheng CH; Lee WC Microb Cell Fact; 2010 Aug; 9():63. PubMed ID: 20799977 [TBL] [Abstract][Full Text] [Related]
18. The heat shock response of Escherichia coli. Arsène F; Tomoyasu T; Bukau B Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710 [TBL] [Abstract][Full Text] [Related]
19. Aggregation gatekeepers modulate protein homeostasis of aggregating sequences and affect bacterial fitness. Beerten J; Jonckheere W; Rudyak S; Xu J; Wilkinson H; De Smet F; Schymkowitz J; Rousseau F Protein Eng Des Sel; 2012 Jul; 25(7):357-66. PubMed ID: 22706763 [TBL] [Abstract][Full Text] [Related]
20. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria. McCarty JS; Rüdiger S; Schönfeld HJ; Schneider-Mergener J; Nakahigashi K; Yura T; Bukau B J Mol Biol; 1996 Mar; 256(5):829-37. PubMed ID: 8601834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]