These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 17992597)

  • 21. Neuroendocrine circadian rhythms in aging.
    Ferrari E; Locatelli M; Magri F; Robino E; Pezza N; Nescis T; Germani E; Mauri M; Solerte SB
    Aging (Milano); 1997; 9(4 Suppl):21-2. PubMed ID: 9358868
    [No Abstract]   [Full Text] [Related]  

  • 22. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
    Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH
    Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian oscillations of molecular clock components in the cerebellar cortex of the rat.
    Rath MF; Rohde K; Møller M
    Chronobiol Int; 2012 Dec; 29(10):1289-99. PubMed ID: 23131067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antiphase signalling in the neuroendocrine-immune system in healthy humans.
    Mazzoccoli G; Muscarella LA; Fazio VM; Piepoli A; Pazienza V; Dagostino MP; Giuliani F; Polyakova VO; Kvetnoy I
    Biomed Pharmacother; 2011 Jul; 65(4):275-9. PubMed ID: 21737229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroendocrine-thymus interactions: perspectives for intervention in aging.
    Fabris N; Mocchegiani E; Muzzioli M; Provinciali M
    Ann N Y Acad Sci; 1988; 521():72-87. PubMed ID: 3288046
    [No Abstract]   [Full Text] [Related]  

  • 26. Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice.
    Mendoza J; Pévet P; Challet E
    Eur J Neurosci; 2007 Jun; 25(12):3691-701. PubMed ID: 17610588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous versus discontinuous drinking of an ethanol liquid diet in peripubertal rats: effect on 24-h variation of lymph node and splenic mitogenic responses and lymphocyte subset populations.
    Jiménez-Ortega V; Fernández-Mateos MP; Barquilla PC; Cardinali DP; Esquifino AI
    Alcohol; 2011 Mar; 45(2):183-92. PubMed ID: 20843641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.
    Mendoza J; Graff C; Dardente H; Pevet P; Challet E
    J Neurosci; 2005 Feb; 25(6):1514-22. PubMed ID: 15703405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-related changes of neuro-endocrine-immune interactions in healthy humans.
    Mazzoccoli G; Correra M; Bianco G; De Cata A; Balzanelli M; Giuliani A; Tarquini R
    J Biol Regul Homeost Agents; 1997; 11(4):143-7. PubMed ID: 9582614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of dexamethasone on clock gene mRNA levels in bovine neutrophils and lymphocytes.
    Nebzydoski SJ; Pozzo S; Nemec L; Rankin MK; Gressley TF
    Vet Immunol Immunopathol; 2010 Dec; 138(3):183-92. PubMed ID: 20807668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A rhythmic placenta? Circadian variation, clock genes and placental function.
    Waddell BJ; Wharfe MD; Crew RC; Mark PJ
    Placenta; 2012 Jul; 33(7):533-9. PubMed ID: 22525887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circadian variation in placental and hepatic clock genes in rat pregnancy.
    Wharfe MD; Mark PJ; Waddell BJ
    Endocrinology; 2011 Sep; 152(9):3552-60. PubMed ID: 21771885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations with aging of the endocrine and neuroendocrine circadian system in humans.
    Touitou Y; Haus E
    Chronobiol Int; 2000 May; 17(3):369-90. PubMed ID: 10841211
    [No Abstract]   [Full Text] [Related]  

  • 34. Dynamics of the circadian clock protein PERIOD2 in living cells.
    Öllinger R; Korge S; Korte T; Koller B; Herrmann A; Kramer A
    J Cell Sci; 2014 Oct; 127(Pt 19):4322-8. PubMed ID: 25074809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alterations of circadian rhythmicity and sleep in aging: endocrine consequences.
    Van Cauter E; Plat L; Leproult R; Copinschi G
    Horm Res; 1998; 49(3-4):147-52. PubMed ID: 9550116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Daily rhythm and regulation of clock gene expression in the rat pineal gland.
    Simonneaux V; Poirel VJ; Garidou ML; Nguyen D; Diaz-Rodriguez E; Pévet P
    Brain Res Mol Brain Res; 2004 Jan; 120(2):164-72. PubMed ID: 14741406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peripheral circadian clocks are diversely affected by adrenalectomy.
    Soták M; Bryndová J; Ergang P; Vagnerová K; Kvapilová P; Vodička M; Pácha J; Sumová A
    Chronobiol Int; 2016; 33(5):520-9. PubMed ID: 27031999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei.
    Caldelas I; Poirel VJ; Sicard B; Pévet P; Challet E
    Neuroscience; 2003; 116(2):583-91. PubMed ID: 12559113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melatonin role in experimental arthritis.
    Cardinali DP; García AP; Cano P; Esquifino AI
    Curr Drug Targets Immune Endocr Metabol Disord; 2004 Mar; 4(1):1-10. PubMed ID: 15032620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence supporting a circadian control of natural killer cell function.
    Arjona A; Sarkar DK
    Brain Behav Immun; 2006 Sep; 20(5):469-76. PubMed ID: 16309885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.