BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 17992680)

  • 1. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.
    Largeron M; Chiaroni A; Fleury MB
    Chemistry; 2008; 14(3):996-1003. PubMed ID: 17992680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of unactivated primary aliphatic amines catalyzed by an electrogenerated 3,4-azaquinone species: a small-molecule mimic of amine oxidases.
    Largeron M; Neudorffer A; Fleury MB
    Angew Chem Int Ed Engl; 2003 Mar; 42(9):1026-9. PubMed ID: 12616557
    [No Abstract]   [Full Text] [Related]  

  • 3. A biomimetic electrocatalytic system for the atom-economical chemoselective synthesis of secondary amines.
    Largeron M; Fleury MB
    Org Lett; 2009 Feb; 11(4):883-6. PubMed ID: 19173617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A small molecule that mimics the metabolic activity of copper-containing amine oxidases (CuAOs) toward physiological mono- and polyamines.
    Largeron M; Fleury MB; Strolin Benedetti M
    Org Biomol Chem; 2010 Aug; 8(16):3796-800. PubMed ID: 20574584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemistry. Bioinspired oxidation catalysts.
    Largeron M; Fleury MB
    Science; 2013 Jan; 339(6115):43-4. PubMed ID: 23288531
    [No Abstract]   [Full Text] [Related]  

  • 6. Electrochemically induced cascade reaction for the assembly of libraries of biologically relevant 1,4-benzoxazine derivatives.
    Xu D; Chiaroni A; Fleury MB; Largeron M
    J Org Chem; 2006 Aug; 71(17):6374-81. PubMed ID: 16901118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.
    Largeron M; Fleury MB
    Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications.
    Largeron M
    Org Biomol Chem; 2017 Jun; 15(22):4722-4730. PubMed ID: 28474720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.
    Qin Y; Zhang L; Lv J; Luo S; Cheng JP
    Org Lett; 2015 Mar; 17(6):1469-72. PubMed ID: 25761008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly stereoselective metal-free catalytic reduction of imines: an easy entry to enantiomerically pure amines and natural and unnatural alpha-amino esters.
    Guizzetti S; Benaglia M; Rossi S
    Org Lett; 2009 Jul; 11(13):2928-31. PubMed ID: 19480447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism-based cofactor derivatization of a copper amine oxidase by a branched primary amine recruits the oxidase activity of the enzyme to turn inactivator into substrate.
    Qiao C; Ling KQ; Shepard EM; Dooley DM; Sayre LM
    J Am Chem Soc; 2006 May; 128(18):6206-19. PubMed ID: 16669691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of an o-iminobenzosemiquinone radical ligand by molecular bromine: structural, spectroscopic, and reactivity studies of a copper(II) o-iminobenzoquinone complex.
    Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P
    Inorg Chem; 2008 Apr; 47(7):2740-6. PubMed ID: 18269234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective synthesis of polycyclic coumarin derivatives catalyzed by an in situ formed primary amine-imine catalyst.
    Zhu X; Lin A; Shi Y; Guo J; Zhu C; Cheng Y
    Org Lett; 2011 Aug; 13(16):4382-5. PubMed ID: 21770363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of post-translational quinone formation in copper amine oxidases and its relationship to the catalytic turnover.
    Dubois JL; Klinman JP
    Arch Biochem Biophys; 2005 Jan; 433(1):255-65. PubMed ID: 15581581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on the catalytic asymmetric Mannich-type reaction with dihydroisoquinolines and development of oxidative Mannich-type reactions starting from tetrahydroisoquinolines.
    Dubs C; Hamashima Y; Sasamoto N; Seidel TM; Suzuki S; Hashizume D; Sodeoka M
    J Org Chem; 2008 Aug; 73(15):5859-71. PubMed ID: 18578499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes.
    Chaudhuri P; Wieghardt K; Weyhermüller T; Paine TK; Mukherjee S; Mukherjee C
    Biol Chem; 2005 Oct; 386(10):1023-33. PubMed ID: 16218874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of a continuous flow-reactor employing a mixed hydrogen-liquid flow stream for the efficient reduction of imines to amines.
    Saaby S; Knudsen KR; Ladlow M; Ley SV
    Chem Commun (Camb); 2005 Jun; (23):2909-11. PubMed ID: 15957022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective.
    Brazeau BJ; Johnson BJ; Wilmot CM
    Arch Biochem Biophys; 2004 Aug; 428(1):22-31. PubMed ID: 15234266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclodextrin aldehydes are oxidase mimics.
    Hauch Fenger T; Bjerre J; Bols M
    Chembiochem; 2009 Oct; 10(15):2494-503. PubMed ID: 19739193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective 1,3-dipolar cycloaddition of cyclic enones catalyzed by multifunctional primary amines: beneficial effects of hydrogen bonding.
    Chen W; Du W; Duan YZ; Wu Y; Yang SY; Chen YC
    Angew Chem Int Ed Engl; 2007; 46(40):7667-70. PubMed ID: 17768751
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 29.