These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17993125)

  • 21. Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment.
    Kammenga JE; Dallinger R; Donker MH; Köhler HR; Simonsen V; Triebskorn R; Weeks JM
    Rev Environ Contam Toxicol; 2000; 164():93-147. PubMed ID: 12587835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic applications in ecotoxicology.
    Monsinjon T; Knigge T
    Proteomics; 2007 Aug; 7(16):2997-3009. PubMed ID: 17703507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic structure and diversity of animal populations exposed to metal pollution.
    Mussali-Galante P; Tovar-Sánchez E; Valverde M; Rojas E
    Rev Environ Contam Toxicol; 2014; 227():79-106. PubMed ID: 24158580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2D-DIGE as a proteomic biomarker discovery tool in environmental studies with Procambarus clarkii.
    Fernández-Cisnal R; García-Sevillano MA; Gómez-Ariza JL; Pueyo C; López-Barea J; Abril N
    Sci Total Environ; 2017 Apr; 584-585():813-827. PubMed ID: 28159302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms.
    Hou J; Wang X; Hayat T; Wang X
    Environ Pollut; 2017 Feb; 221():209-217. PubMed ID: 27939631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Environment and health in Gela (Sicily): present knowledge and prospects for future studies].
    Musmeci L; Bianchi F; Carere M; Cori L
    Epidemiol Prev; 2009; 33(3 Suppl 1):7-12. PubMed ID: 19776462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxicogenomic approach for assessing toxicant-related disease.
    Waters MD; Olden K; Tennant RW
    Mutat Res; 2003 Nov; 544(2-3):415-24. PubMed ID: 14644344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review.
    Rodrigues ET; Lopes I; Pardal MÂ
    Environ Int; 2013 Mar; 53():18-28. PubMed ID: 23314040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Platinum group elements in the environment: emissions and exposure.
    Dubiella-Jackowska A; Polkowska Z; Namieńnik J
    Rev Environ Contam Toxicol; 2009; 199():111-35. PubMed ID: 19110940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic proteomic approach to characterize the impacts of chemical interactions on protein and cytotoxicity responses to metal mixture exposures.
    Ge Y; Bruno M; Wallace K; Leavitt S; Andrews D; Spassova MA; Xi M; Roy A; Haykal-Coates N; Lefew W; Swank A; Winnik WM; Chen C; Woodard J; Farraj A; Teichman KY; Ross JA
    J Proteome Res; 2015 Jan; 14(1):183-92. PubMed ID: 25285964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century.
    Mortensen HM; Euling SY
    Toxicol Appl Pharmacol; 2013 Sep; 271(3):395-404. PubMed ID: 21291902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marine proteomics: a critical assessment of an emerging technology.
    Slattery M; Ankisetty S; Corrales J; Marsh-Hunkin KE; Gochfeld DJ; Willett KL; Rimoldi JM
    J Nat Prod; 2012 Oct; 75(10):1833-77. PubMed ID: 23009278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental proteomics: analysis of structure and function of microbial communities.
    Schneider T; Riedel K
    Proteomics; 2010 Feb; 10(4):785-98. PubMed ID: 19953545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecotoxicological effects at contaminated sites.
    Fent K
    Toxicology; 2004 Dec; 205(3):223-40. PubMed ID: 15464632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Omics tools: New challenges in aquatic nanotoxicology?
    Revel M; Châtel A; Mouneyrac C
    Aquat Toxicol; 2017 Dec; 193():72-85. PubMed ID: 29049925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.