These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17993137)

  • 1. Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions.
    Shen C; Li B; Huang Y; Jin Y
    Environ Sci Technol; 2007 Oct; 41(20):6976-82. PubMed ID: 17993137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.
    Hahn MW; O'Meliae CR
    Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media.
    Franchi A; O'Melia CR
    Environ Sci Technol; 2003 Mar; 37(6):1122-9. PubMed ID: 12680664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Detachment of Colloids from Primary Energy Minima by Brownian Diffusion.
    Wang Z; Jin Y; Shen C; Li T; Huang Y; Li B
    PLoS One; 2016; 11(1):e0147368. PubMed ID: 26784446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled effect of extended DLVO and capillary interactions on the retention and transport of colloids through unsaturated porous media.
    Xu S; Qi J; Chen X; Lazouskaya V; Zhuang J; Jin Y
    Sci Total Environ; 2016 Dec; 573():564-572. PubMed ID: 27580467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media.
    Bradford SA; Torkzaban S
    Langmuir; 2015 Nov; 31(44):12096-105. PubMed ID: 26484563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory.
    Tong M; Johnson WP
    Environ Sci Technol; 2007 Jan; 41(2):493-9. PubMed ID: 17310712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property.
    Zhuang J; Qi J; Jin Y
    Environ Sci Technol; 2005 Oct; 39(20):7853-9. PubMed ID: 16295847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of barrel and spherical shaped colloids in unsaturated porous media.
    Knappenberger T; Aramrak S; Flury M
    J Contam Hydrol; 2015 Sep; 180():69-79. PubMed ID: 26275396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle shape on colloid retention and release in saturated porous media.
    Liu Q; Lazouskaya V; He Q; Jin Y
    J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloid transport with wetting fronts: interactive effects of solution surface tension and ionic strength.
    Zhuang J; Goeppert N; Tu C; McCarthy J; Perfect E; McKay L
    Water Res; 2010 Feb; 44(4):1270-8. PubMed ID: 20056511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An explanation for differences in the process of colloid adsorption in batch and column studies.
    Treumann S; Torkzaban S; Bradford SA; Visalakshan RM; Page D
    J Contam Hydrol; 2014 Aug; 164():219-29. PubMed ID: 24997430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of colloid retention and release by straining and energy minima in variably saturated porous media.
    Sang W; Morales VL; Zhang W; Stoof CR; Gao B; Schatz AL; Zhang Y; Steenhuis TS
    Environ Sci Technol; 2013 Aug; 47(15):8256-64. PubMed ID: 23805840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of surface roughness on colloid retention and release in porous media.
    Torkzaban S; Bradford SA
    Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.