These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17993138)

  • 1. Impact of propene on secondary organic aerosol formation from m-xylene.
    Song C; Na K; Warren B; Malloy Q; Cocker DR
    Environ Sci Technol; 2007 Oct; 41(20):6990-5. PubMed ID: 17993138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary organic aerosol formation from m-xylene in the absence of NOx.
    Song C; Na K; Warren B; Malloy Q; Cocker DR
    Environ Sci Technol; 2007 Nov; 41(21):7409-16. PubMed ID: 18044519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of secondary organic aerosol (SOA) formation during o-, m-, and p-xylene photooxidation.
    Zhang P; Huang J; Shu J; Yang B
    Environ Pollut; 2019 Feb; 245():20-28. PubMed ID: 30408761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory studies on secondary organic aerosol formation from terpenes.
    Iinuma Y; Böge O; Miao Y; Sierau B; Gnauk T; Herrmann H
    Faraday Discuss; 2005; 130():279-94; discussion 363-86, 519-24. PubMed ID: 16161789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light intensity and light source influence on secondary organic aerosol formation for the m-xylene/NO(x) photooxidation system.
    Warren B; Song C; Cocker DR
    Environ Sci Technol; 2008 Aug; 42(15):5461-6. PubMed ID: 18754461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary organic aerosol formation from the photooxidation of p- and o-xylene.
    Song C; Na K; Warren B; Malloy Q; Cocker DR
    Environ Sci Technol; 2007 Nov; 41(21):7403-8. PubMed ID: 18044518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation.
    Song C; Na K; Cocker DR
    Environ Sci Technol; 2005 May; 39(9):3143-9. PubMed ID: 15926564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of NO
    Liu S; Wang Y; Xu X; Wang G
    Chemosphere; 2022 Dec; 308(Pt 3):136541. PubMed ID: 36150487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Titanium Dioxide on Secondary Organic Aerosol Formation.
    Chen Y; Tong S; Wang J; Peng C; Ge M; Xie X; Sun J
    Environ Sci Technol; 2018 Oct; 52(20):11612-11620. PubMed ID: 30232878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber.
    Weitkamp EA; Sage AM; Pierce JR; Donahue NM; Robinson AL
    Environ Sci Technol; 2007 Oct; 41(20):6969-75. PubMed ID: 17993136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The underappreciated role of monocarbonyl-dicarbonyl interconversion in secondary organic aerosol formation during photochemical oxidation of m-xylene.
    Chen J; Li J; Chen X; Gu J; An T
    Sci Total Environ; 2022 Mar; 814():152575. PubMed ID: 34963606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes.
    Tkacik DS; Presto AA; Donahue NM; Robinson AL
    Environ Sci Technol; 2012 Aug; 46(16):8773-81. PubMed ID: 22823284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene.
    Healy RM; Temime B; Kuprovskyte K; Wenger JC
    Environ Sci Technol; 2009 Mar; 43(6):1884-9. PubMed ID: 19368187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Smog Chamber/Oxidation Flow Reactor Study on Aging of Secondary Organic Aerosol from Photooxidation of Aromatic Hydrocarbons.
    Chen T; Liu J; Chu B; Ge Y; Zhang P; Ma Q; He H
    Environ Sci Technol; 2023 Sep; 57(37):13937-13947. PubMed ID: 37691473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer.
    Bahreini R; Keywood MD; Ng NL; Varutbangkul V; Gao S; Flagan RC; Seinfeld JH; Worsnop DR; Jimenez JL
    Environ Sci Technol; 2005 Aug; 39(15):5674-88. PubMed ID: 16124302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary organic aerosol from photooxidation of polycyclic aromatic hydrocarbons.
    Shakya KM; Griffin RJ
    Environ Sci Technol; 2010 Nov; 44(21):8134-9. PubMed ID: 20919733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of products formed from the oxidation of toluene and m-xylene with varying NO
    Srivastava D; Li W; Tong S; Shi Z; Harrison RM
    Chemosphere; 2023 Sep; 334():139002. PubMed ID: 37220797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large-scale outdoor atmospheric simulation smog chamber for studying atmospheric photochemical processes: Characterization and preliminary application.
    Li J; Li H; Wang X; Wang W; Ge M; Zhang H; Zhang X; Li K; Chen Y; Wu Z; Chai F; Meng F; Mu Y; Mellouki A; Bi F; Zhang Y; Wu L; Liu Y
    J Environ Sci (China); 2021 Apr; 102():185-197. PubMed ID: 33637243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.
    Sumner AJ; Woo JL; McNeill VF
    Environ Sci Technol; 2014 Oct; 48(20):11919-25. PubMed ID: 25226456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-NO
    Lamkaddam H; Gratien A; Pangui E; Cazaunau M; Picquet-Varrault B; Doussin JF
    Environ Sci Technol; 2017 Jan; 51(1):192-201. PubMed ID: 27966908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.