These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17993139)

  • 1. Strong colloidal and dissolved organic ligands binding copper and zinc in rivers.
    Hoffmann SR; Shafer MM; Armstrong DE
    Environ Sci Technol; 2007 Oct; 41(20):6996-7002. PubMed ID: 17993139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and kinetic speciation of copper and zinc in three geochemically contrasting marine estuaries.
    Shafer MM; Hoffmann SR; Overdier JT; Armstrong DE
    Environ Sci Technol; 2004 Jul; 38(14):3810-9. PubMed ID: 15298187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.
    Tonietto AE; Lombardi AT; Choueri RB; Vieira AA
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15920-30. PubMed ID: 26050150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study.
    Meylan S; Behra R; Sigg L
    Environ Sci Technol; 2004 Jun; 38(11):3104-11. PubMed ID: 15224742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported liquid membrane techniques.
    Ndungu K; Hurst MP; Bruland KW
    Environ Sci Technol; 2005 May; 39(9):3166-75. PubMed ID: 15926567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of effluent organic matter and its hydrophilic fraction on zinc(II) complexation in rivers under strong urban pressure: aromaticity as an inaccurate indicator of DOM-metal binding.
    Louis Y; Pernet-Coudrier B; Varrault G
    Sci Total Environ; 2014 Aug; 490():830-7. PubMed ID: 24907618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry.
    Ndungu K
    Environ Sci Technol; 2012 Jul; 46(14):7644-52. PubMed ID: 22724636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong copper-binding behavior of terrestrial humic substances in seawater.
    Kogut MB; Voelker BM
    Environ Sci Technol; 2001 Mar; 35(6):1149-56. PubMed ID: 11347927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand.
    Wang R; Chakrabarti CL
    Anal Chim Acta; 2008 May; 614(2):153-60. PubMed ID: 18420045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Copper Speciation in Estuarine Waters-Is Dissolved Organic Carbon a Good Proxy for the Presence of Organic Ligands?
    Pearson HB; Comber SD; Braungardt C; Worsfold PJ
    Environ Sci Technol; 2017 Feb; 51(4):2206-2216. PubMed ID: 28098987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation of Cu and Zn in drainage water from agricultural soils.
    Aldrich AP; Kistler D; Sigg L
    Environ Sci Technol; 2002 Nov; 36(22):4824-30. PubMed ID: 12487306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic Copper Speciation by Anodic Stripping Voltammetry in Estuarine Waters With High Dissolved Organic Matter.
    Pađan J; Marcinek S; Cindrić AM; Santinelli C; Retelletti Brogi S; Radakovitch O; Garnier C; Omanović D
    Front Chem; 2020; 8():628749. PubMed ID: 33634075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of accuracy and precision in speciation analysis by competitive ligand equilibration-cathodic stripping voltammetry (CLE-CSV) and application to Antarctic samples.
    Monticelli D; Dossi C; Castelletti A
    Anal Chim Acta; 2010 Aug; 675(2):116-24. PubMed ID: 20800722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers.
    Gundersen P; Steinnes E
    Water Res; 2003 Jan; 37(2):307-18. PubMed ID: 12502060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability.
    Sander SG; Hunter KA; Harms H; Wells M
    Environ Sci Technol; 2011 Aug; 45(15):6388-95. PubMed ID: 21751821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange-adsorptive stripping voltammetry (CLE-AdSV).
    Van Leeuwen HP; Town RM
    Environ Sci Technol; 2005 Sep; 39(18):7217-25. PubMed ID: 16201651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper (II) complexation in northern California rice field waters: an investigation using differential pulse anodic and cathodic stripping voltammetry.
    Witter AE; Mabury SA; Jones AD
    Sci Total Environ; 1998 Mar; 212(1):21-37. PubMed ID: 9525045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variability of total dissolved copper and copper speciation in the inshore waters of Bermuda.
    Oldham VE; Swenson MM; Buck KN
    Mar Pollut Bull; 2014 Feb; 79(1-2):314-20. PubMed ID: 24461699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of copper speciation in highway stormwater runoff using competitive ligand exchange - Adsorptive cathodic stripping voltammetry.
    Nason JA; Sprick MS; Bloomquist DJ
    Water Res; 2012 Nov; 46(17):5788-5798. PubMed ID: 22921394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.