These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17993146)

  • 1. Bromide oxidation and formation of dihaloacetic acids in chloraminated water.
    Duirk SE; Valentine RL
    Environ Sci Technol; 2007 Oct; 41(20):7047-53. PubMed ID: 17993146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling monochloramine loss in the presence of natural organic matter.
    Duirk SE; Gombert B; Croué JP; Valentine RL
    Water Res; 2005 Sep; 39(14):3418-31. PubMed ID: 16045963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.
    Bond T; Huang J; Graham NJ; Templeton MR
    Sci Total Environ; 2014 Feb; 470-471():469-79. PubMed ID: 24176694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine.
    Chen Z; Valentine RL
    Environ Sci Technol; 2006 Dec; 40(23):7290-7. PubMed ID: 17180980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated Pb(II) release from the reduction of Pb(IV) corrosion product PbO2 induced by bromide-catalyzed monochloramine decomposition.
    Zhang Y; Lin YP
    Environ Sci Technol; 2013 Oct; 47(19):10931-8. PubMed ID: 23984629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter.
    Duirk SE; Valentine RL
    Water Res; 2006 Aug; 40(14):2667-74. PubMed ID: 16824576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter.
    Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY
    Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates.
    Kristiana I; Gallard H; Joll C; Croué JP
    Water Res; 2009 Sep; 43(17):4177-86. PubMed ID: 19616274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.
    Hua G; Reckhow DA; Abusallout I
    Chemosphere; 2015 Jul; 130():82-9. PubMed ID: 25862949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.
    Heeb MB; Criquet J; Zimmermann-Steffens SG; von Gunten U
    Water Res; 2014 Jan; 48():15-42. PubMed ID: 24184020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of organic chloramines during water disinfection: chlorination versus chloramination.
    Lee W; Westerhoff P
    Water Res; 2009 May; 43(8):2233-9. PubMed ID: 19269665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Assessment of Reactive Bromine Species in Advanced Oxidation Processes: Differential Roles in Micropollutant Abatement in Bromide-Containing Water.
    Guo K; Zhang Y; Wu S; Qin W; Wang Y; Hua Z; Chen C; Fang J
    Environ Sci Technol; 2023 Dec; 57(48):20339-20348. PubMed ID: 37946521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monochloramine loss in the presence of humic acid.
    Duirk SE; Gombert B; Choi J; Valentine RL
    J Environ Monit; 2002 Feb; 4(1):85-9. PubMed ID: 11871712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of brominated trihalomethanes during chlorination or ozonation of natural organic matter extracts and model compounds in saline water.
    Liu ZQ; Shah AD; Salhi E; Bolotin J; von Gunten U
    Water Res; 2018 Oct; 143():492-502. PubMed ID: 29986257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ternary Model of the Speciation of I-/Br-/Cl-Trihalomethanes Formed in Chloraminated Surface Waters.
    Yan M; Li M; Roccaro P; Korshin GV
    Environ Sci Technol; 2016 Apr; 50(8):4468-75. PubMed ID: 27007081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative importance of nitrite oxidation by hypochlorous acid under chloramination conditions.
    Wahman DG; Speitel GE
    Environ Sci Technol; 2012 Jun; 46(11):6056-64. PubMed ID: 22571335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH on the speciation coefficients in models of bromide influence on the formation of trihalomethanes and haloacetic acids.
    Roccaro P; Korshin GV; Cook D; Chow CW; Drikas M
    Water Res; 2014 Oct; 62():117-26. PubMed ID: 24945979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.
    Hua G; Reckhow DA
    Water Res; 2007 Apr; 41(8):1667-78. PubMed ID: 17360020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of lead oxide (PbO2) and release of Pb(II) in mixtures of natural organic matter, free chlorine and monochloramine.
    Lin YP; Valentine RL
    Environ Sci Technol; 2009 May; 43(10):3872-7. PubMed ID: 19544901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.