These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 17993151)
1. Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. Wang Y; Hammes F; Boon N; Egli T Environ Sci Technol; 2007 Oct; 41(20):7080-6. PubMed ID: 17993151 [TBL] [Abstract][Full Text] [Related]
2. Passage and community changes of filterable bacteria during microfiltration of a surface water supply. Liu J; Li B; Wang Y; Zhang G; Jiang X; Li X Environ Int; 2019 Oct; 131():104998. PubMed ID: 31330365 [TBL] [Abstract][Full Text] [Related]
3. Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters. Wang Y; Hammes F; Düggelin M; Egli T Environ Sci Technol; 2008 Sep; 42(17):6749-54. PubMed ID: 18800559 [TBL] [Abstract][Full Text] [Related]
4. Broad diversity of viable bacteria in 'sterile' (0.2 microm) filtered water. Hahn MW Res Microbiol; 2004 Oct; 155(8):688-91. PubMed ID: 15380558 [TBL] [Abstract][Full Text] [Related]
5. Detection and characterization of filterable heterotrophic bacteria from rural groundwater supplies. Lillis TO; Bissonnette GK Lett Appl Microbiol; 2001 Apr; 32(4):268-72. PubMed ID: 11298939 [TBL] [Abstract][Full Text] [Related]
6. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water. Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413 [TBL] [Abstract][Full Text] [Related]
7. Use of Hydrogenophaga pseudoflava penetration to quantitatively assess the impact of filtration parameters for 0.2-micrometer-pore-size filters. Lee A; McVey J; Faustino P; Lute S; Sweeney N; Pawar V; Khan M; Brorson K; Hussong D Appl Environ Microbiol; 2010 Feb; 76(3):695-700. PubMed ID: 19966023 [TBL] [Abstract][Full Text] [Related]
8. The impact of industrial-scale cartridge filtration on the native microbial communities from groundwater. Wang Y; Hammes F; Egli T Water Res; 2008 Oct; 42(16):4319-26. PubMed ID: 18775553 [TBL] [Abstract][Full Text] [Related]
9. [Effect or preliminary filtration on the functional characteristics of bacterioplankton from Lake Khanka]. Shchur LA; Aponasenko AD; Lopatin VN; Makarskaia GV; Pozhilenkova PV Mikrobiologiia; 2001; 70(3):405-11. PubMed ID: 11450465 [TBL] [Abstract][Full Text] [Related]
10. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Miteva VI; Brenchley JE Appl Environ Microbiol; 2005 Dec; 71(12):7806-18. PubMed ID: 16332755 [TBL] [Abstract][Full Text] [Related]
11. In vitro comparison of epidural bacteria filters permeability and screening scanning electron microscopy. Sener A; Erkin Y; Sener A; Tasdogen A; Dokumaci E; Elar Z Braz J Anesthesiol; 2015; 65(6):491-6. PubMed ID: 26614147 [TBL] [Abstract][Full Text] [Related]
12. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies. Park JW; Lee YJ; Meyer AS; Douterelo I; Maeng SK Water Res; 2018 Nov; 144():36-45. PubMed ID: 30014977 [TBL] [Abstract][Full Text] [Related]
13. Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment. Magic-Knezev A; Wullings B; Van der Kooij D J Appl Microbiol; 2009 Nov; 107(5):1457-67. PubMed ID: 19457026 [TBL] [Abstract][Full Text] [Related]
14. Comparative performance of membrane filters vs. high-surface area filtration cartridges for the determination of element concentrations in freshwater systems. Vignati DA; Loizeau JL; Rossé P; Dominik J Water Res; 2006 Mar; 40(5):917-24. PubMed ID: 16458950 [TBL] [Abstract][Full Text] [Related]
15. Selective isolation of bacteria for metagenomic analysis: Impact of membrane characteristics on bacterial filterability. Nnadozie CF; Lin J; Govinden R Biotechnol Prog; 2015; 31(4):853-66. PubMed ID: 26018114 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing. Folmsbee M PDA J Pharm Sci Technol; 2015; 69(2):307-16. PubMed ID: 25868996 [TBL] [Abstract][Full Text] [Related]
17. Phylotype diversity of deep-sea hydrothermal vent prokaryotes trapped by 0.2- and 0.1-microm-pore-size filters. Naganuma T; Miyoshi T; Kimura H Extremophiles; 2007 Jul; 11(4):637-46. PubMed ID: 17401540 [TBL] [Abstract][Full Text] [Related]
18. Sorption of bacterial endotoxin and retention of bacteria by positively charged membrane filters. van Doorne H J Parenter Sci Technol; 1993; 47(5):192-8. PubMed ID: 8263658 [TBL] [Abstract][Full Text] [Related]
19. Detection and identification of groundwater bacteria capable of escaping entrapment on 0.45-micron-pore-size membrane filters. Shirey JJ; Bissonnette GK Appl Environ Microbiol; 1991 Aug; 57(8):2251-4. PubMed ID: 1768096 [TBL] [Abstract][Full Text] [Related]
20. Characteristics of Bacterial Communities in Biological Filters of Full-Scale Drinking Water Treatment Plants. Choi Y; Cha Y; Kim B J Microbiol Biotechnol; 2019 Jan; 29(1):91-104. PubMed ID: 30518015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]