BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17993222)

  • 1. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation.
    de Mello JW; Talbott JL; Scott J; Roy WR; Stucki JW
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):388-96. PubMed ID: 17993222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Speciation transformation and behavior of arsenic in soils under anoxic conditions].
    Wu X; Xu LY; Zhang XX; Song Y; Wang X; Jia YF
    Huan Jing Ke Xue; 2012 Jan; 33(1):273-9. PubMed ID: 22452222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic biotransformation in earthworms from contaminated soils.
    Button M; Jenkin GR; Harrington CF; Watts MJ
    J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities.
    Xu L; Wu X; Wang S; Yuan Z; Xiao F; Yang M; Jia Y
    J Hazard Mater; 2016 Jan; 301():538-46. PubMed ID: 26434533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B
    Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic.
    Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z
    Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area.
    Pearce DC; Dowling K; Gerson AR; Sim MR; Sutton SR; Newville M; Russell R; McOrist G
    Sci Total Environ; 2010 May; 408(12):2590-9. PubMed ID: 20067849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils.
    Lee KY; Kim KW; Kim SO
    Environ Geochem Health; 2010 Feb; 32(1):31-44. PubMed ID: 19412738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities.
    Tabelin CB; Silwamba M; Paglinawan FC; Mondejar AJS; Duc HG; Resabal VJ; Opiso EM; Igarashi T; Tomiyama S; Ito M; Hiroyoshi N; Villacorte-Tabelin M
    Chemosphere; 2020 Dec; 260():127574. PubMed ID: 32688316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil).
    Bidone E; Castilhos Z; Cesar R; Santos MC; Sierpe R; Ferreira M
    Environ Sci Pollut Res Int; 2016 May; 23(9):8546-55. PubMed ID: 26797944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of arsenite and arsenate in flooded and not flooded soils of southwest Bangladesh irrigated with arsenic contaminated water.
    Martin M; Violante A; Barberis E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1775-83. PubMed ID: 17952778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia.
    Acosta JA; Arocena JM; Faz A
    Chemosphere; 2015 Nov; 138():1014-20. PubMed ID: 25577694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling speciation and isotope dilution techniques to study arsenic mobilization in the environment.
    Hamon RE; Lombi E; Fortunati P; Nolan AL; McLaughlin MJ
    Environ Sci Technol; 2004 Mar; 38(6):1794-8. PubMed ID: 15074691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.
    García-Salgado S; Quijano MÁ
    Environ Sci Process Impacts; 2014 Mar; 16(3):604-12. PubMed ID: 24513726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid.
    Ascar L; Ahumada I; Richter P
    Chemosphere; 2008 Aug; 72(10):1548-1552. PubMed ID: 18550147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
    Zagury GJ; Dobran S; Estrela S; Deschênes L
    Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.