BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17993222)

  • 21. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China.
    Yang F; Xie S; Wei C; Liu J; Zhang H; Chen T; Zhang J
    Sci Total Environ; 2018 Jun; 626():77-86. PubMed ID: 29335176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.
    Bauer M; Blodau C
    Sci Total Environ; 2006 Feb; 354(2-3):179-90. PubMed ID: 16398994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions.
    Chen X; Zeng XC; Kawa YK; Wu W; Zhu X; Ullah Z; Wang Y
    Ecotoxicol Environ Saf; 2020 Feb; 189():109946. PubMed ID: 31759742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic in Mining Areas: Environmental Contamination Routes.
    Faria MCDS; Hott RC; Santos MJD; Santos MS; Andrade TG; Bomfeti CA; Rocha BA; Barbosa F; Rodrigues JL
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem.
    Martínez-Villegas N; Briones-Gallardo R; Ramos-Leal JA; Avalos-Borja M; Castañón-Sandoval AD; Razo-Flores E; Villalobos M
    Environ Pollut; 2013 May; 176():114-22. PubMed ID: 23416746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia.
    Eapaea MP; Parry D; Noller B
    Sci Total Environ; 2007 Jul; 379(2-3):201-15. PubMed ID: 17499841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining.
    Ruiz-Chancho MJ; López-Sánchez JF; Rubio R
    Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition.
    Balasoiu CF; Zagury GJ; Deschênes L
    Sci Total Environ; 2001 Dec; 280(1-3):239-55. PubMed ID: 11763270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity.
    Koo N; Lee SH; Kim JG
    Environ Geochem Health; 2012 Jun; 34(3):337-48. PubMed ID: 21850414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photo-induced redox coupling of dissolved organic matter and iron in biochars and soil system: Enhanced mobility of arsenic.
    Kim HB; Kim JG; Choi JH; Kwon EE; Baek K
    Sci Total Environ; 2019 Nov; 689():1037-1043. PubMed ID: 31466144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Health risk apportionment of arsenic from multiple exposure pathways in Paracatu, a gold mining town in Brazil.
    Ng JC; Ciminelli V; Gasparon M; Caldeira C
    Sci Total Environ; 2019 Jul; 673():36-43. PubMed ID: 30981922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature.
    Simmler M; Bommer J; Frischknecht S; Christl I; Kotsev T; Kretzschmar R
    Environ Pollut; 2017 Dec; 231(Pt 1):722-731. PubMed ID: 28850940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Field and laboratory arsenic speciation methods and their application to natural-water analysis.
    Bednar AJ; Garbarino JR; Burkhardt MR; Ranville JF; Wildeman TR
    Water Res; 2004 Jan; 38(2):355-64. PubMed ID: 14675647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic in Sediments, Soil and Plants in a Remediated Area of the Iron Quadrangle, Brazil, and its Accumulation and Biotransformation in Eleocharis geniculata.
    Menezes MĂBC; Falnoga I; Ĺ Lejkovec Z; JaÄ imoviÄ R; Couto N; Deschamps E; Faganeli J
    Acta Chim Slov; 2020 Sep; 67(3):985-991. PubMed ID: 33533426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea.
    Yang K; Jeong S; Jho EH; Nam K
    Environ Geochem Health; 2016 Dec; 38(6):1347-1354. PubMed ID: 26769492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Variations of arsenic species in the solution of arsenic-contaminated paddy soil under flooding and at different temperatures].
    Wang Z; Cui JH; Chen Z; Lu XJ; Liu WJ
    Ying Yong Sheng Tai Xue Bao; 2013 May; 24(5):1415-22. PubMed ID: 24015564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil: Effects of arsenic species.
    Wang Z; Cui Z; Liu L; Ma Q; Xu X
    Chemosphere; 2016 Jul; 154():161-170. PubMed ID: 27045633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.