BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17993329)

  • 1. Cardiac electrical dynamics: maximizing dynamical heterogeneity.
    Gilmour RF; Gelzer AR; Otani NF
    J Electrocardiol; 2007; 40(6 Suppl):S51-5. PubMed ID: 17993329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms linking electrical alternans and clinical ventricular arrhythmia in human heart failure.
    Bayer JD; Lalani GG; Vigmond EJ; Narayan SM; Trayanova NA
    Heart Rhythm; 2016 Sep; 13(9):1922-31. PubMed ID: 27215536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discordant Alternans as a Mechanism for Initiation of Ventricular Fibrillation In Vitro.
    Muñoz LM; Gelzer ARM; Fenton FH; Qian W; Lin W; Gilmour RF; Otani NF
    J Am Heart Assoc; 2018 Sep; 7(17):e007898. PubMed ID: 30371176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal transition to conduction block in canine ventricle.
    Fox JJ; Riccio ML; Hua F; Bodenschatz E; Gilmour RF
    Circ Res; 2002 Feb; 90(3):289-96. PubMed ID: 11861417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue.
    Qu Z; Garfinkel A; Chen PS; Weiss JN
    Circulation; 2000 Oct; 102(14):1664-70. PubMed ID: 11015345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of short term memory and conduction velocity restitution in alternans formation.
    Wei N; Mori Y; Tolkacheva EG
    J Theor Biol; 2015 Feb; 367():21-28. PubMed ID: 25435411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for discordant alternans.
    Watanabe MA; Fenton FH; Evans SJ; Hastings HM; Karma A
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):196-206. PubMed ID: 11232619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic mechanism for initiation of ventricular fibrillation in vivo.
    Gelzer AR; Koller ML; Otani NF; Fox JJ; Enyeart MW; Hooker GJ; Riccio ML; Bartoli CR; Gilmour RF
    Circulation; 2008 Sep; 118(11):1123-9. PubMed ID: 18725487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of antiarrhythmics on the electrical restitution in perfused guinea-pig heart are critically determined by the applied cardiac pacing protocol.
    Osadchii OE
    Exp Physiol; 2019 Apr; 104(4):490-504. PubMed ID: 30758086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High [Ca2+]o-induced electrical heterogeneity and extrasystolic activity in isolated canine ventricular epicardium. Phase 2 reentry.
    Di Diego JM; Antzelevitch C
    Circulation; 1994 Apr; 89(4):1839-50. PubMed ID: 7511994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternans resonance and propagation block during supernormal conduction in cardiac tissue with decreased [K(+)](o).
    de Lange E; Kucera JP
    Biophys J; 2010 Apr; 98(7):1129-38. PubMed ID: 20371312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of discordant T wave alternans in the in vivo heart.
    Chinushi M; Kozhevnikov D; Caref EB; Restivo M; El-Sherif N
    J Cardiovasc Electrophysiol; 2003 Jun; 14(6):632-8. PubMed ID: 12875425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties.
    Cao JM; Qu Z; Kim YH; Wu TJ; Garfinkel A; Weiss JN; Karagueuzian HS; Chen PS
    Circ Res; 1999 Jun; 84(11):1318-31. PubMed ID: 10364570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
    Echebarria B; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051911. PubMed ID: 18233691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: a computational study.
    Clayton RH; Taggart P
    Biomed Eng Online; 2005 Sep; 4():54. PubMed ID: 16174290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamically-Induced Spatial Dispersion of Repolarization and the Development of VF in an Animal Model of Sudden Death.
    Gelzer A; Otani N; Koller M; Enyeart M; Moise N; Gilmour R
    Comput Cardiol; 2009 Sep; 2009():309-312. PubMed ID: 20622925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially discordant alternans in cardiomyocyte monolayers.
    de Diego C; Pai RK; Dave AS; Lynch A; Thu M; Chen F; Xie LH; Weiss JN; Valderrábano M
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1417-25. PubMed ID: 18223190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiomyocyte-Specific STIM1 (Stromal Interaction Molecule 1) Depletion in the Adult Heart Promotes the Development of Arrhythmogenic Discordant Alternans.
    Cacheux M; Strauss B; Raad N; Ilkan Z; Hu J; Benard L; Feske S; Hulot JS; Akar FG
    Circ Arrhythm Electrophysiol; 2019 Nov; 12(11):e007382. PubMed ID: 31726860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of action potential wave block at-a-distance in the heart.
    Otani NF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021910. PubMed ID: 17358370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of spatiotemporal heterogeneity of cellular restitution in mechanism of arrhythmogenic discordant alternans.
    Pastore JM; Laurita KR; Rosenbaum DS
    Heart Rhythm; 2006 Jun; 3(6):711-9. PubMed ID: 16731476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.