BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17993334)

  • 1. Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart.
    Bishop MJ; Gavaghan DJ; Trayanova NA; Rodriguez B
    J Electrocardiol; 2007; 40(6 Suppl):S75-80. PubMed ID: 17993334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional panoramic imaging of cardiac arrhythmias in rabbit heart.
    Qu F; Ripplinger CM; Nikolski VP; Grimm C; Efimov IR
    J Biomed Opt; 2007; 12(4):044019. PubMed ID: 17867823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering.
    Bishop MJ; Rodriguez B; Trayanova N; Gavaghan DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1556-9. PubMed ID: 17946049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What can we learn from the optically recorded epicardial action potential?
    Pertsov AM; Zemlin CW; Hyatt CJ; Bernus O
    Biophys J; 2006 Nov; 91(10):3959-60. PubMed ID: 16935958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation.
    Pop M; Sermesant M; Liu G; Relan J; Mansi T; Soong A; Peyrat JM; Truong MV; Fefer P; McVeigh ER; Delingette H; Dick AJ; Ayache N; Wright GA
    Med Image Anal; 2012 Feb; 16(2):505-23. PubMed ID: 22209561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping.
    Bishop MJ; Rodriguez B; Eason J; Whiteley JP; Trayanova N; Gavaghan DJ
    Biophys J; 2006 Apr; 90(8):2938-45. PubMed ID: 16443665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of photon scattering in optical signal distortion during arrhythmia and defibrillation.
    Bishop MJ; Rodriguez B; Qu F; Efimov IR; Gavaghan DJ; Trayanova NA
    Biophys J; 2007 Nov; 93(10):3714-26. PubMed ID: 17978166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of intramural wavefront orientation from optical recordings in realistic whole-heart models.
    Bishop MJ; Rodriguez B; Trayanova N; Gavaghan DJ
    Biophys J; 2006 Nov; 91(10):3957-8. PubMed ID: 16935956
    [No Abstract]   [Full Text] [Related]  

  • 9. Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation.
    Hyatt CJ; Zemlin CW; Smith RM; Matiukas A; Pertsov AM; Bernus O
    Opt Express; 2008 Sep; 16(18):13758-72. PubMed ID: 18772987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional surface reconstruction and panoramic optical mapping of large hearts.
    Kay MW; Amison PM; Rogers JM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1219-29. PubMed ID: 15248538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-myocardial cusp waves and their manifestation in optical mapping signals.
    Bernus O; Zemlin CW; Matiukas A; Hyatt CJ; Pertsov AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1564-7. PubMed ID: 17946905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials.
    Mironov SF; Vetter FJ; Pertsov AM
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H327-35. PubMed ID: 16428336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an imaging modality utilizing 2D optical signals during an EPI-fluorescent optical mapping experiment.
    Prior P; Roth BJ
    Phys Med Biol; 2009 May; 54(10):3015-30. PubMed ID: 19387101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical mapping of late myocardial infarction in rats.
    Mills WR; Mal N; Forudi F; Popovic ZB; Penn MS; Laurita KR
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1298-306. PubMed ID: 16214848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usage of cardiac simulation results in source localization of focal epicardial arrhythmias using statistical estimation.
    Cunedioglu U; Baysoy E; Yilmaz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():589-92. PubMed ID: 19162724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns.
    Hyatt CJ; Mironov SF; Wellner M; Berenfeld O; Popp AK; Weitz DA; Jalife J; Pertsov AM
    Biophys J; 2003 Oct; 85(4):2673-83. PubMed ID: 14507730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-resolved optical imaging of transmural electrical propagation in perfused heart.
    Hillman EM; Bernus O; Pease E; Bouchard MB; Pertsov A
    Opt Express; 2007 Dec; 15(26):17827-41. PubMed ID: 18592044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of depth-weighted optical signals during cardiac optical mapping: a simulation study.
    Xu Z; Zhang Z; Jin Y; Wang J
    Comput Biol Med; 2007 May; 37(5):732-8. PubMed ID: 16987506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity.
    Walton RD; Bernus O
    Adv Exp Med Biol; 2015; 859():405-23. PubMed ID: 26238062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac electrophysiology model adjustment using the fusion of MR and optical imaging.
    Lepiller D; Sermesant M; Pop M; Delingette H; Wright GA; Ayache N
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):678-85. PubMed ID: 18979805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.