These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17993468)

  • 1. PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC.
    Ossipova O; Tabler J; Green JB; Sokol SY
    Development; 2007 Dec; 134(23):4297-306. PubMed ID: 17993468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The apicobasal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during Xenopus primary neurogenesis.
    Sabherwal N; Tsutsui A; Hodge S; Wei J; Chalmers AD; Papalopulu N
    Development; 2009 Aug; 136(16):2767-77. PubMed ID: 19633170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC.
    Kusakabe M; Nishida E
    EMBO J; 2004 Oct; 23(21):4190-201. PubMed ID: 15343271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAR-1 promotes primary neurogenesis and asymmetric cell divisions via control of spindle orientation.
    Tabler JM; Yamanaka H; Green JB
    Development; 2010 Aug; 137(15):2501-5. PubMed ID: 20573701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning.
    Cha SW; Tadjuidje E; Wylie C; Heasman J
    Development; 2011 Sep; 138(18):3989-4000. PubMed ID: 21813572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm.
    Sato T; Sasai N; Sasai Y
    Development; 2005 May; 132(10):2355-63. PubMed ID: 15843410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo.
    Chalmers AD; Strauss B; Papalopulu N
    Development; 2003 Jun; 130(12):2657-68. PubMed ID: 12736210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAR-1 phosphorylates Mind bomb to promote vertebrate neurogenesis.
    Ossipova O; Ezan J; Sokol SY
    Dev Cell; 2009 Aug; 17(2):222-33. PubMed ID: 19686683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development.
    Hayes JM; Kim SK; Abitua PB; Park TJ; Herrington ER; Kitayama A; Grow MW; Ueno N; Wallingford JB
    Dev Biol; 2007 Dec; 312(1):115-30. PubMed ID: 17961536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Par6b regulates the dynamics of apicobasal polarity during development of the stratified Xenopus epidermis.
    Wang S; Cha SW; Zorn AM; Wylie C
    PLoS One; 2013; 8(10):e76854. PubMed ID: 24204686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation.
    Chalmers AD; Welchman D; Papalopulu N
    Dev Cell; 2002 Feb; 2(2):171-82. PubMed ID: 11832243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atypical protein kinase C controls sea urchin ciliogenesis.
    Prulière G; Cosson J; Chevalier S; Sardet C; Chenevert J
    Mol Biol Cell; 2011 Jun; 22(12):2042-53. PubMed ID: 21508313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long- and short-range signals control the dynamic expression of an animal hemisphere-specific gene in Xenopus.
    Mir A; Kofron M; Heasman J; Mogle M; Lang S; Birsoy B; Wylie C
    Dev Biol; 2008 Mar; 315(1):161-72. PubMed ID: 18234171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.
    Angerer LM; Oleksyn DW; Logan CY; McClay DR; Dale L; Angerer RC
    Development; 2000 Mar; 127(5):1105-14. PubMed ID: 10662649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway.
    Zhao H; Cao Y; Grunz H
    Dev Biol; 2003 May; 257(2):278-91. PubMed ID: 12729558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction.
    Takebayashi-Suzuki K; Arita N; Murasaki E; Suzuki A
    Mech Dev; 2007; 124(11-12):840-55. PubMed ID: 17950579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinase SGK1 in the endoderm and mesoderm promotes ectodermal survival by down-regulating components of the death-inducing signaling complex.
    Endo T; Kusakabe M; Sunadome K; Yamamoto T; Nishida E
    Sci Signal; 2011 Jan; 4(156):ra2. PubMed ID: 21245468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized Wnt signaling regulates ectodermal cell fate in Xenopus.
    Huang YL; Niehrs C
    Dev Cell; 2014 Apr; 29(2):250-7. PubMed ID: 24780739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinase-activity-independent functions of atypical protein kinase C in Drosophila.
    Kim S; Gailite I; Moussian B; Luschnig S; Goette M; Fricke K; Honemann-Capito M; Grubmüller H; Wodarz A
    J Cell Sci; 2009 Oct; 122(Pt 20):3759-71. PubMed ID: 19789180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metastasis-associated kinase modulates Wnt signaling to regulate brain patterning and morphogenesis.
    Kibardin A; Ossipova O; Sokol SY
    Development; 2006 Aug; 133(15):2845-54. PubMed ID: 16790480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.