These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17993499)

  • 1. Microscopic simulation of membrane molecule diffusion on corralled membrane surfaces.
    Niehaus AM; Vlachos DG; Edwards JS; Plechac P; Tribe R
    Biophys J; 2008 Mar; 94(5):1551-64. PubMed ID: 17993499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena.
    Jin S; Verkman AS
    J Phys Chem B; 2007 Apr; 111(14):3625-32. PubMed ID: 17388520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo investigation of diffusion of receptors and ligands that bind across opposing surfaces.
    Tsourkas PK; Raychaudhuri S
    Ann Biomed Eng; 2011 Jan; 39(1):427-42. PubMed ID: 20811955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface reaction-diffusion kinetics on lattice at the microscopic scale.
    Chew WX; Kaizu K; Watabe M; Muniandy SV; Takahashi K; Arjunan SNV
    Phys Rev E; 2019 Apr; 99(4-1):042411. PubMed ID: 31108654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-particle tracking: effects of corrals.
    Saxton MJ
    Biophys J; 1995 Aug; 69(2):389-98. PubMed ID: 8527652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping molecular diffusion in the plasma membrane by Multiple-Target Tracing (MTT).
    Rouger V; Bertaux N; Trombik T; Mailfert S; Billaudeau C; Marguet D; Sergé A
    J Vis Exp; 2012 May; (63):e3599. PubMed ID: 22664619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What can we learn from single molecule trajectories?
    Ruprecht V; Axmann M; Wieser S; Schutz GJ
    Curr Protein Pept Sci; 2011 Dec; 12(8):714-24. PubMed ID: 22044145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of anomalous diffusion on cell membranes: a Monte Carlo study.
    Nicolau DV; Hancock JF; Burrage K
    Biophys J; 2007 Mar; 92(6):1975-87. PubMed ID: 17189312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
    Mayawala K; Vlachos DG; Edwards JS
    Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhomogeneous membrane receptor diffusion explained by a fractional heteroscedastic time series model.
    Balcerek M; Loch-Olszewska H; Torreno-Pina JA; Garcia-Parajo MF; Weron A; Manzo C; Burnecki K
    Phys Chem Chem Phys; 2019 Feb; 21(6):3114-3121. PubMed ID: 30672913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy.
    Skaug MJ; Faller R; Longo ML
    J Chem Phys; 2011 Jun; 134(21):215101. PubMed ID: 21663377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical analysis of lateral diffusion and multistate kinetics in single-molecule imaging.
    Matsuoka S; Shibata T; Ueda M
    Biophys J; 2009 Aug; 97(4):1115-24. PubMed ID: 19686659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic.
    Gheber LA; Edidin M
    Biophys J; 1999 Dec; 77(6):3163-75. PubMed ID: 10585938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking.
    Goiko M; de Bruyn JR; Heit B
    Biophys J; 2018 Jun; 114(12):2887-2899. PubMed ID: 29925025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin filaments partition primary cilia membranes into distinct fluid corrals.
    Lee S; Tan HY; Geneva II; Kruglov A; Calvert PD
    J Cell Biol; 2018 Aug; 217(8):2831-2849. PubMed ID: 29945903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking.
    Ritchie K; Shan XY; Kondo J; Iwasawa K; Fujiwara T; Kusumi A
    Biophys J; 2005 Mar; 88(3):2266-77. PubMed ID: 15613635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral diffusion in a discrete fluid membrane with immobile particles.
    Kalay Z; Fujiwara TK; Otaka A; Kusumi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022724. PubMed ID: 25353525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection of diffusion modes within biological membranes using back-propagation neural network.
    Dosset P; Rassam P; Fernandez L; Espenel C; Rubinstein E; Margeat E; Milhiet PE
    BMC Bioinformatics; 2016 May; 17(1):197. PubMed ID: 27141816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive boundary conditions for stochastic simulations of reaction-diffusion processes.
    Erban R; Chapman SJ
    Phys Biol; 2007 Feb; 4(1):16-28. PubMed ID: 17406082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells.
    Kusumi A; Sako Y; Yamamoto M
    Biophys J; 1993 Nov; 65(5):2021-40. PubMed ID: 8298032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.