BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17993525)

  • 1. Characterization of the CopR regulon of Lactococcus lactis IL1403.
    Magnani D; Barré O; Gerber SD; Solioz M
    J Bacteriol; 2008 Jan; 190(2):536-45. PubMed ID: 17993525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae.
    Mills SD; Lim CK; Cooksey DA
    Mol Gen Genet; 1994 Aug; 244(4):341-51. PubMed ID: 8078459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors.
    O'Brien H; Alvin JW; Menghani SV; Sanchez-Rosario Y; Van Doorslaer K; Johnson MDL
    mSphere; 2020 May; 5(3):. PubMed ID: 32461276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress.
    Mermod M; Mourlane F; Waltersperger S; Oberholzer AE; Baumann U; Solioz M
    J Bacteriol; 2010 Aug; 192(16):4172-80. PubMed ID: 20562311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The copper-responsive repressor CopR of Lactococcus lactis is a 'winged helix' protein.
    Cantini F; Banci L; Solioz M
    Biochem J; 2009 Jan; 417(2):493-9. PubMed ID: 18837698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.
    Mancini S; Abicht HK; Gonskikh Y; Solioz M
    Mol Microbiol; 2015 Feb; 95(4):645-59. PubMed ID: 25430846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper induction of lactate oxidase of Lactococcus lactis: a novel metal stress response.
    Barré O; Mourlane F; Solioz M
    J Bacteriol; 2007 Aug; 189(16):5947-54. PubMed ID: 17557814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR.
    Petersen C; Møller LB
    Gene; 2000 Dec; 261(2):289-98. PubMed ID: 11167016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CopY-like copper inducible repressors are putative 'winged helix' proteins.
    Portmann R; Poulsen KR; Wimmer R; Solioz M
    Biometals; 2006 Feb; 19(1):61-70. PubMed ID: 16502332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363.
    Zomer AL; Buist G; Larsen R; Kok J; Kuipers OP
    J Bacteriol; 2007 Feb; 189(4):1366-81. PubMed ID: 17028270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation and structure of YahD, a copper-inducible α/β serine hydrolase of Lactococcus lactis IL1403.
    Martinez J; Mancini S; Tauberger E; Weise C; Saenger W; Solioz M
    FEMS Microbiol Lett; 2011 Jan; 314(1):57-66. PubMed ID: 21059179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae.
    Portmann R; Magnani D; Stoyanov JV; Schmechel A; Multhaup G; Solioz M
    J Biol Inorg Chem; 2004 Jun; 9(4):396-402. PubMed ID: 15057514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes.
    Corbett D; Schuler S; Glenn S; Andrew PW; Cavet JS; Roberts IS
    Mol Microbiol; 2011 Jul; 81(2):457-72. PubMed ID: 21564342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Escherichia coli allantoin regulon: coordinated function of the repressor AllR and the activator AllS.
    Rintoul MR; Cusa E; Baldomà L; Badia J; Reitzer L; Aguilar J
    J Mol Biol; 2002 Dec; 324(4):599-610. PubMed ID: 12460564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004.
    Brown NL; Barrett SR; Camakaris J; Lee BT; Rouch DA
    Mol Microbiol; 1995 Sep; 17(6):1153-66. PubMed ID: 8594334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element.
    den Hengst CD; van Hijum SA; Geurts JM; Nauta A; Kok J; Kuipers OP
    J Biol Chem; 2005 Oct; 280(40):34332-42. PubMed ID: 16040604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens.
    Nawapan S; Charoenlap N; Charoenwuttitam A; Saenkham P; Mongkolsuk S; Vattanaviboon P
    J Bacteriol; 2009 Aug; 191(16):5159-68. PubMed ID: 19502402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae.
    Mills SD; Jasalavich CA; Cooksey DA
    J Bacteriol; 1993 Mar; 175(6):1656-64. PubMed ID: 8449873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heavy metal tolerant soil bacterium Achromobacter sp. AO22 contains a unique copper homeostasis locus and two mer operons.
    Ng SP; Palombo EA; Bhave M
    J Microbiol Biotechnol; 2012 Jun; 22(6):742-53. PubMed ID: 22573150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The iron-responsive Fur regulon in Yersinia pestis.
    Gao H; Zhou D; Li Y; Guo Z; Han Y; Song Y; Zhai J; Du Z; Wang X; Lu J; Yang R
    J Bacteriol; 2008 Apr; 190(8):3063-75. PubMed ID: 18281395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.