These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17993601)

  • 1. Effects of myocardial constraint on the passive mechanical behaviors of the coronary vessel wall.
    Liu Y; Zhang W; Kassab GS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H514-23. PubMed ID: 17993601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonuniformity of axial and circumferential remodeling of large coronary veins in response to ligation.
    Choy JS; Dang Q; Molloi S; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 Apr; 290(4):H1558-65. PubMed ID: 16299258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment.
    Liu Y; Dang C; Garcia M; Gregersen H; Kassab GS
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3290-300. PubMed ID: 17873018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diameter-dependent axial prestretch of porcine coronary arteries and veins.
    Guo X; Liu Y; Kassab GS
    J Appl Physiol (1985); 2012 Mar; 112(6):982-9. PubMed ID: 22162531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surrounding tissue on vessel fluid and solid mechanics.
    Zhang W; Herrera C; Atluri SN; Kassab GS
    J Biomech Eng; 2004 Dec; 126(6):760-9. PubMed ID: 15796334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive mechanical properties of porcine left circumflex artery and its mathematical description.
    Carboni M; Desch GW; Weizsäcker HW
    Med Eng Phys; 2007 Jan; 29(1):8-16. PubMed ID: 16497534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of longitudinal pre-stretch and radial constraint on the stress distribution in the vessel wall: a new hypothesis.
    Zhang W; Herrera C; Atluri SN; Kassab GS
    Mech Chem Biosyst; 2005; 2(1):41-52. PubMed ID: 16708471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery.
    Qiu Y; Tarbell JM
    J Biomech Eng; 2000 Feb; 122(1):77-85. PubMed ID: 10790833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmural strain distribution in the blood vessel wall.
    Guo X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H881-6. PubMed ID: 15650158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical signals in the coronary artery triggering the metabolic processes during cardiac overload.
    Gerová M; Pechánová O; Stoev V; Kittová M; Bernátová I; Juráni M; Dolezel S
    Mol Cell Biochem; 1995 Jun 7-21; 147(1-2):69-73. PubMed ID: 7494557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling of small intramyocardial coronary arteries distal to a severe epicardial coronary artery stenosis.
    Hong H; Aksenov S; Guan X; Fallon JT; Waters D; Chen C
    Arterioscler Thromb Vasc Biol; 2002 Dec; 22(12):2059-65. PubMed ID: 12482835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biaxial vasoactivity of porcine coronary artery.
    Huo Y; Cheng Y; Zhao X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2058-63. PubMed ID: 22427520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biaxial elastic material properties of porcine coronary media and adventitia.
    Pandit A; Lu X; Wang C; Kassab GS
    Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2581-7. PubMed ID: 15792993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of myocardium-coronary vessel interaction.
    Algranati D; Kassab GS; Lanir Y
    Am J Physiol Heart Circ Physiol; 2010 Mar; 298(3):H861-73. PubMed ID: 19966048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Duration of no-load state affects opening angle of porcine coronary arteries.
    Rehal D; Guo X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 May; 290(5):H1871-8. PubMed ID: 16339834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.