These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 17993623)

  • 41. TPP riboswitch characterization in Alishewanella tabrizica and Alishewanella aestuarii and comparison with other TPP riboswitches.
    Mehdizadeh Aghdam E; Sinn M; Tarhriz V; Barzegar A; Hartig JS; Hejazi MS
    Microbiol Res; 2017 Jan; 195():71-80. PubMed ID: 28024528
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conformational Dynamics of thiM Riboswitch To Understand the Gene Regulation Mechanism Using Markov State Modeling and the Residual Fluctuation Network Approach.
    Kesherwani M; N H V K; Velmurugan D
    J Chem Inf Model; 2018 Aug; 58(8):1638-1651. PubMed ID: 29939019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine.
    Sudarsan N; Cohen-Chalamish S; Nakamura S; Emilsson GM; Breaker RR
    Chem Biol; 2005 Dec; 12(12):1325-35. PubMed ID: 16356850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of a hairpin-stabilized pause in the
    Chauvier A; Nadon JF; Grondin JP; Lamontagne AM; Lafontaine DA
    RNA Biol; 2019 Aug; 16(8):1066-1073. PubMed ID: 31081713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.
    Guedich S; Puffer-Enders B; Baltzinger M; Hoffmann G; Da Veiga C; Jossinet F; Thore S; Bec G; Ennifar E; Burnouf D; Dumas P
    RNA Biol; 2016; 13(4):373-90. PubMed ID: 26932506
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro selection of conformational probes for riboswitches.
    Mayer G; Famulok M
    Methods Mol Biol; 2009; 540():291-300. PubMed ID: 19381568
    [TBL] [Abstract][Full Text] [Related]  

  • 47. X-Ray Crystallography to Study Conformational Changes in a TPP Riboswitch.
    Nuthanakanti A; Ariza-Mateos A; Serganov A
    Methods Mol Biol; 2023; 2568():213-232. PubMed ID: 36227571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. mRNA 3' end formation in plants: Novel connections to growth, development and environmental responses.
    Hunt AG
    Wiley Interdiscip Rev RNA; 2020 May; 11(3):e1575. PubMed ID: 31701654
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roles of Mg2+ in TPP-dependent riboswitch.
    Yamauchi T; Miyoshi D; Kubodera T; Nishimura A; Nakai S; Sugimoto N
    FEBS Lett; 2005 May; 579(12):2583-8. PubMed ID: 15862294
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas.
    Mehrshahi P; Nguyen GTDT; Gorchs Rovira A; Sayer A; Llavero-Pasquina M; Lim Huei Sin M; Medcalf EJ; Mendoza-Ochoa GI; Scaife MA; Smith AG
    ACS Synth Biol; 2020 Jun; 9(6):1406-1417. PubMed ID: 32496044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A physical and functional link between splicing factors promotes pre-mRNA 3' end processing.
    Millevoi S; Decorsière A; Loulergue C; Iacovoni J; Bernat S; Antoniou M; Vagner S
    Nucleic Acids Res; 2009 Aug; 37(14):4672-83. PubMed ID: 19506027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation.
    Chauvier A; Picard-Jean F; Berger-Dancause JC; Bastet L; Naghdi MR; Dubé A; Turcotte P; Perreault J; Lafontaine DA
    Nat Commun; 2017 Jan; 8():13892. PubMed ID: 28071751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Artificial ribozyme switches containing natural riboswitch aptamer domains.
    Wieland M; Benz A; Klauser B; Hartig JS
    Angew Chem Int Ed Engl; 2009; 48(15):2715-8. PubMed ID: 19156802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of riboswitch structures: light at the end of the tunnel?
    Serganov A
    RNA Biol; 2010; 7(1):98-103. PubMed ID: 20061809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An allosteric self-splicing ribozyme triggered by a bacterial second messenger.
    Lee ER; Baker JL; Weinberg Z; Sudarsan N; Breaker RR
    Science; 2010 Aug; 329(5993):845-848. PubMed ID: 20705859
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches.
    Llavero-Pasquina M; Geisler K; Holzer A; Mehrshahi P; Mendoza-Ochoa GI; Newsad SA; Davey MP; Smith AG
    New Phytol; 2022 Sep; 235(5):1853-1867. PubMed ID: 35653609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing riboswitch-ligand interactions using thiamine pyrophosphate analogues.
    Chen L; Cressina E; Dixon N; Erixon K; Agyei-Owusu K; Micklefield J; Smith AG; Abell C; Leeper FJ
    Org Biomol Chem; 2012 Aug; 10(30):5924-31. PubMed ID: 22514012
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Species-specific factors mediate extensive heterogeneity of mRNA 3' ends in yeasts.
    Moqtaderi Z; Geisberg JV; Jin Y; Fan X; Struhl K
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):11073-8. PubMed ID: 23776204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting riboswitch regulation on a genomic scale.
    Barrick JE
    Methods Mol Biol; 2009; 540():1-13. PubMed ID: 19381548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome-wide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length.
    Martin G; Gruber AR; Keller W; Zavolan M
    Cell Rep; 2012 Jun; 1(6):753-63. PubMed ID: 22813749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.