BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17993784)

  • 1. Differential roles of archaeal box H/ACA proteins in guide RNA-dependent and independent pseudouridine formation.
    Gurha P; Joardar A; Chaurasia P; Gupta R
    RNA Biol; 2007 Oct; 4(2):101-9. PubMed ID: 17993784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:Psi55-synthase and RNA-guided RNA:Psi-synthase activities.
    Muller S; Fourmann JB; Loegler C; Charpentier B; Branlant C
    Nucleic Acids Res; 2007; 35(16):5610-24. PubMed ID: 17704128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation.
    Charpentier B; Muller S; Branlant C
    Nucleic Acids Res; 2005; 33(10):3133-44. PubMed ID: 15933208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA.
    Gurha P; Gupta R
    RNA; 2008 Dec; 14(12):2521-7. PubMed ID: 18952823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity.
    Manival X; Charron C; Fourmann JB; Godard F; Charpentier B; Branlant C
    Nucleic Acids Res; 2006; 34(3):826-39. PubMed ID: 16456033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.
    Fourmann JB; Tillault AS; Blaud M; Leclerc F; Branlant C; Charpentier B
    PLoS One; 2013; 8(7):e70313. PubMed ID: 23922977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein.
    Fujikane R; Behm-Ansmant I; Tillault AS; Loegler C; Igel-Bourguignon V; Marguet E; Forterre P; Branlant C; Motorin Y; Charpentier B
    Sci Rep; 2018 Sep; 8(1):13815. PubMed ID: 30218085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudouridine formation in archaeal RNAs: The case of Haloferax volcanii.
    Blaby IK; Majumder M; Chatterjee K; Jana S; Grosjean H; de Crécy-Lagard V; Gupta R
    RNA; 2011 Jul; 17(7):1367-80. PubMed ID: 21628430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue.
    Deogharia M; Mukhopadhyay S; Joardar A; Gupta R
    RNA; 2019 Mar; 25(3):336-351. PubMed ID: 30530625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of forefinger and thumb loops in production of Ψ54 and Ψ55 in tRNAs by archaeal Pus10.
    Joardar A; Jana S; Fitzek E; Gurha P; Majumder M; Chatterjee K; Geisler M; Gupta R
    RNA; 2013 Sep; 19(9):1279-94. PubMed ID: 23898217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaeal proteins Nop10 and Gar1 increase the catalytic activity of Cbf5 in pseudouridylating tRNA.
    Kamalampeta R; Kothe U
    Sci Rep; 2012; 2():663. PubMed ID: 22993689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of the conserved pseudouridine at position 55 in archaeal tRNA.
    Roovers M; Hale C; Tricot C; Terns MP; Terns RM; Grosjean H; Droogmans L
    Nucleic Acids Res; 2006; 34(15):4293-301. PubMed ID: 16920741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic interactions within sub-complexes of the H/ACA pseudouridylation guide RNP.
    Youssef OA; Terns RM; Terns MP
    Nucleic Acids Res; 2007; 35(18):6196-206. PubMed ID: 17855403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs.
    Becker HF; Motorin Y; Planta RJ; Grosjean H
    Nucleic Acids Res; 1997 Nov; 25(22):4493-9. PubMed ID: 9358157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of two conserved histidines to the dual activity of archaeal RNA guide-dependent and -independent pseudouridine synthase Cbf5.
    Tillault AS; Fourmann JB; Loegler C; Wieden HJ; Kothe U; Charpentier B
    RNA; 2015 Jul; 21(7):1233-9. PubMed ID: 25990001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA size is a critical factor for U-containing substrate selectivity and permanent pseudouridylated product release during the RNA:Ψ-synthase reaction catalyzed by box H/ACA sRNP enzyme at high temperature.
    Tillault AS; Fourmann JB; Loegler C; Blaud M; Branlant C; Charpentier B
    Biochimie; 2015 Jun; 113():134-42. PubMed ID: 25896443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity.
    Saliou JM; Manival X; Tillault AS; Atmanene C; Bobo C; Branlant C; Van Dorsselaer A; Charpentier B; Cianférani S
    Proteomics; 2015 Aug; 15(16):2851-61. PubMed ID: 25727850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP.
    Baker DL; Youssef OA; Chastkofsky MI; Dy DA; Terns RM; Terns MP
    Genes Dev; 2005 May; 19(10):1238-48. PubMed ID: 15870259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation.
    Majumder M; Bosmeny MS; Gupta R
    RNA; 2016 Oct; 22(10):1604-19. PubMed ID: 27539785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.