These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 1799411)

  • 1. An energetic evaluation of a "Smith" collagen microfibril model.
    Chen JM; Kung CE; Feairheller SH; Brown EM
    J Protein Chem; 1991 Oct; 10(5):535-52. PubMed ID: 1799411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.
    Lee J; Scheraga HA; Rackovsky S
    Biopolymers; 1996; 40(6):595-607. PubMed ID: 9140199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The energy of formation of internal loops in triple-helical collagen polypeptides.
    Paterlini MG; Némethy G; Scheraga HA
    Biopolymers; 1995 Jun; 35(6):607-19. PubMed ID: 7766826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence.
    Okuyama K; Miyama K; Morimoto T; Masakiyo K; Mizuno K; Bächinger HP
    Biopolymers; 2011 Sep; 95(9):628-40. PubMed ID: 21442606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture.
    Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB
    Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Two types of tripeptide conformation in collagen. Calculation of the structure of (Gly-Pro-Ser)n and (Gly-Val-Hyp)n polytripeptides].
    Abagyan RA; Tumanian VG; Esipova NG
    Bioorg Khim; 1984 Apr; 10(4):476-82. PubMed ID: 6548632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional energy-minimized model of human type II "Smith" collagen microfibril.
    Chen JM; Sheldon A; Pincus MR
    J Biomol Struct Dyn; 1995 Jun; 12(6):1129-59. PubMed ID: 7669264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the collagen model peptide (Pro-Pro-Gly)4-Hyp-Asp-Gly-(Pro-Pro-Gly)4 at 1.0 Å resolution.
    Okuyama K; Kawaguchi T; Shimura M; Noguchi K; Mizuno K; Bächinger HP
    Biopolymers; 2013 Jul; 99(7):436-47. PubMed ID: 23616212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural consequences of D-amino acids in collagen triple-helical peptides.
    Shah NK; Brodsky B; Kirkpatrick A; Ramshaw JA
    Biopolymers; 1999 Apr; 49(4):297-302. PubMed ID: 10079768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide.
    Bhate M; Wang X; Baum J; Brodsky B
    Biochemistry; 2002 May; 41(20):6539-47. PubMed ID: 12009919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a collagen-like polypeptide with repeating sequence Pro-Hyp-Gly at 1.4 A resolution: implications for collagen hydration.
    Berisio R; Vitagliano L; Mazzarella L; Zagari A
    Biopolymers; 2000-2001; 56(1):8-13. PubMed ID: 11582572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide.
    Chen YS; Chen CC; Horng JC
    Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive interactions observed in the crystal structure of a collagen-model peptide, [(Pro-Pro-Gly)9]3.
    Hongo C; Noguchi K; Okuyama K; Tanaka Y; Nishino N
    J Biochem; 2005 Aug; 138(2):135-44. PubMed ID: 16091587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of cation-π interactions to the collagen triple helix stability.
    Chen CC; Hsu W; Hwang KC; Hwu JR; Lin CC; Horng JC
    Arch Biochem Biophys; 2011 Apr; 508(1):46-53. PubMed ID: 21241657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-chain proline:proline contacts contribute to the stability of the triple helical conformation.
    Bhatnagar RS; Pattabiraman N; Sorensen KR; Langridge R; MacElroy RD; Renugopalakrishnan V
    J Biomol Struct Dyn; 1988 Oct; 6(2):223-33. PubMed ID: 3271521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix.
    Bella J; Liu J; Kramer R; Brodsky B; Berman HM
    J Mol Biol; 2006 Sep; 362(2):298-311. PubMed ID: 16919298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of collagen fibrils by hydroxyproline.
    Némethy G; Scheraga HA
    Biochemistry; 1986 Jun; 25(11):3184-8. PubMed ID: 3730354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backbone dynamics of (Pro-Hyp-Gly)10 and a designed collagen-like triple-helical peptide by 15N NMR relaxation and hydrogen-exchange measurements.
    Fan P; Li MH; Brodsky B; Baum J
    Biochemistry; 1993 Dec; 32(48):13299-309. PubMed ID: 8241186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of poly(Pro-Hyp-Gly)(n) by direct poly-condensation of (Pro-Hyp-Gly)(n), where n=1, 5, and 10, and stability of the triple-helical structure.
    Kishimoto T; Morihara Y; Osanai M; Ogata S; Kamitakahara M; Ohtsuki C; Tanihara M
    Biopolymers; 2005 Oct; 79(3):163-72. PubMed ID: 16094625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.