BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17994247)

  • 1. A model of perceptual segregation based on clustering the time series of the simulated auditory nerve firing probability.
    Balaguer-Ballester E; Coath M; Denham SL
    Biol Cybern; 2007 Dec; 97(5-6):479-91. PubMed ID: 17994247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer model of medial efferent suppression in the mammalian auditory system.
    Ferry RT; Meddis R
    J Acoust Soc Am; 2007 Dec; 122(6):3519-26. PubMed ID: 18247760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual consequences of disrupted auditory nerve activity.
    Zeng FG; Kong YY; Michalewski HJ; Starr A
    J Neurophysiol; 2005 Jun; 93(6):3050-63. PubMed ID: 15615831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
    Grossberg S; Govindarajan KK; Wyse LL; Cohen MA
    Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory processing of complex sounds: an overview.
    Evans EF
    Philos Trans R Soc Lond B Biol Sci; 1992 Jun; 336(1278):295-306. PubMed ID: 1354368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm.
    Bahmer A; Langner G
    Biol Cybern; 2006 Oct; 95(4):371-9. PubMed ID: 16847666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing of complex sounds in the auditory system.
    Nelken I
    Curr Opin Neurobiol; 2008 Aug; 18(4):413-7. PubMed ID: 18805485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical and subcortical sides of auditory rhythms and pitches.
    Deutscher A; Kurt S; Scheich H; Schulze H
    Neuroreport; 2006 Jun; 17(9):853-6. PubMed ID: 16738475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceptual organization of tone sequences in the auditory cortex of awake macaques.
    Micheyl C; Tian B; Carlyon RP; Rauschecker JP
    Neuron; 2005 Oct; 48(1):139-48. PubMed ID: 16202714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal processing in the auditory system and how it may relate to binaural hearing.
    Møller AR
    Scand Audiol Suppl; 1982; 15():65-79. PubMed ID: 6955928
    [No Abstract]   [Full Text] [Related]  

  • 13. An autocorrelation model of bat sonar.
    Wiegrebe L
    Biol Cybern; 2008 Jun; 98(6):587-95. PubMed ID: 18491168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal conversion of auditory information for cochleotopic mapping.
    Hoshino O
    Neural Comput; 2007 Feb; 19(2):351-70. PubMed ID: 17206868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biologically motivated neural network for phase extraction from complex sounds.
    Borst M; Langner G; Palm G
    Biol Cybern; 2004 Feb; 90(2):98-104. PubMed ID: 14999476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling auditory evoked brainstem responses to transient stimuli.
    Rønne FM; Dau T; Harte J; Elberling C
    J Acoust Soc Am; 2012 May; 131(5):3903-13. PubMed ID: 22559366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient coding of natural sounds.
    Lewicki MS
    Nat Neurosci; 2002 Apr; 5(4):356-63. PubMed ID: 11896400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
    Neubauer H; Köppl C; Heil P
    J Neurophysiol; 2009 Jun; 101(6):3169-91. PubMed ID: 19357334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandwidth determines modulatory effects of centrifugal pathways on cochlear hearing desensitization caused by loud sound.
    Rajan R
    Eur J Neurosci; 2006 Dec; 24(12):3589-600. PubMed ID: 17229107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new window on sound.
    Olshausen BA; O'Connor KN
    Nat Neurosci; 2002 Apr; 5(4):292-4. PubMed ID: 11914717
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.